Report Title

Infrastructure Design Report

Client

Cairn Homes Properties Ltd

Job Title: Residential Development at Newcastle South, Co. Dublin.

Job Number: 210026

Report Title: Infrastructure Design Report

Report Reference: 210026-DBFL-CS-SP-RP-C-0001

Author: Conor O' Loughlin/John Moloney

Approved by: Noel Gorman

Date: June 2022

Distribution: Planning

Client

Architect

Planning Consultant

File

DBFL Consulting Engineers
Ormond House
Upper Ormond Quay
Dublin 7

Tel 01 4004000
Fax 01 4004050
Email info@dbfl.ie
Web <u>www.dbfl.ie</u>

Revision	Issue Date	Description	Prepared	Reviewed	Approved
P1	October 2021	Stage 2 SHD	COL/JJM	NCG	DJR
P2	June 2022	Stage 3 SHD	COL/JJM	NCG	DJR

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Objectives	1
1.3	Location	1
1.4	Proposed Development	3
1.5	Flood Risk	4
1.6	Existing Ground Conditions	4
2.0	ACCESS AND ROADS	5
2.1	Overall Road and Access Layout	5
2.2	Green-link Cycle Infrastructure	6
2.3	Road Layout Design	6
2.4	Pavement Design Standards	7
2.5	Traffic & Transportation	7
2.6	Vehicle Tracking	7
2.7	Driveway Access	7
2.8	Quality Audit	7
3.0	SURFACE WATER DRAINAGE	9
3.1	Existing Surface Water	9
3.2	Surface Water Drainage Strategy	9
3.3	SUDS	12
3.4	Surface Attenuation Storage	13
3.5	Interception Volume	17
3.6	Design Standards	17
3.7	Drainage Ditches and Overland Flow	18
3.8	Climate Change	19
3.9	Pluvial Flooding Provision	19
3.10	0 Surface Water Quality Impact	19
4.0	FOUL DRAINAGE	20
4.1	Existing Foul Drainage	20
4.2	Consultation with Irish Water	20
4.3	Design Strategy	20
4.4	Design Calculations	21
4.5	Compliance with Irish Water Standards	21
4.6	Foul Environmental Impacts	22
4.7	Pumping station	22

26	WATER SUPPLY AND DISTRIBUTION	5.0
26	Existing Water supply	5.1
26	2 Development Water Main Layout	5.2
26	Compliance with Irish Water Standards	5.3
26	Water Demand & Conservation	5.4

APPENDICES

Appendix A. IW CONFIRMATION OF FEASIBILITY & STATEMENT OF

DESIGN ACCEPTANCE

Appendix B. SURFACE WATER NETWORK CALCULATIONS

Appendix C. ATTENUATION CALCULATIONS

Appendix D. SWALE & CULVERT CALCULATIONS

Appendix E . FOUL SEWER NETWORK CALCULATIONS

Appendix F. PUMPING STATION CALCULATIONS

Appendix G. QBAR CALCULATIONS

Appendix H. DMURS QUALITY AUDIT

Appendix I. CCTV REPORTS

1.0 INTRODUCTION

1.1 Background

DBFL were commissioned to undertake an Infrastructure Design Report to accompany a planning submission to An Bord Pleanála for a residential development at Newcastle, South County Dublin.

The Graydon SHD development is currently under construction to the east of the subject site under planning reference ABP 305343-19.

Previously the Newcastle South lands obtained planning permission from South Dublin City Council for 743 dwellings including a neighbourhood centre and a Creche in March 2006 under application Ref. SD05A/0344. This planning permission also granted permission to construct the western section of the main spine road through the subject site. A planning permission extension was requested under application Ref. SD05A/0344/EP in July 2014, which was granted by SDCC in September 2014 and expired in November 2017.

The proposed development will consist of the construction of 280 no. dwellings and associated ancillary infrastructure on a site of c. 8.47 hectares.

1.2 Objectives

This report aims to consider the proposed development main infrastructure elements, including the following;

- Road Layout/Site access including cyclist infrastructure.
- Surface water strategy and servicing.
- Foul sewer strategy and servicing.
- Water supply and servicing.

1.3 Location

The subject site, of approximately 8.47 hectares, is located to the south of the R120/Main Street at Newcastle Village. The site is bounded by the Graydon residential development to the east, the Athgoe Road to the west, by single dwellings to the north and existing agricultural lands to the south. The St Finian's National School and Church is located to the north of the site. St Finian's Way residential development is also located to the north of the site.

The development lands form part of the South Dublin County Development Plan (2016-2022) and the Draft South Dublin County Council Development Plan 2022-2028. The proposed development is zoned 'to provide for new residential communities in accordance with approved planning schemes' (RES-N).

The proposed development Site is predominantly greenfield and a construction compound has been constructed on the eastern area adjacent to Graydon development as well as a construction access across the site from the Athgoe Road to the Graydon development lands. Existing boundaries within the site are predominantly hedgerows and fencing with some drainage ditches. The proposed creche is located in the previously permitted Graydon development.

Figure 1.1 Site Location

1.3.1 Topography

The overall topography of the site falls from south to north toward Newcastle Village as shown in Figure 1.2. A topographical survey of the site is provided as a background to the road layout drawing 210026-DBFL-RD-SP-DR-C-1101.

Figure 1.2 Site Topography.

1.4 Proposed Development

The development will consist of the construction of 280 no. dwellings and associated ancillary infrastructure on lands of c. 8.47 hectares (2 no. sites comprising main development site (8.4 ha.) and site relating to permitted creche c. 0.07 ha. in 'Graydon') as follows:

The development will consist of the construction of 280 no. dwellings, a creche, and open space as follows:

- A) 128 no. 2 storey houses (8 no. 2 bedroom houses, 94 no. 3 bedroom houses, 25 no. 4 bedroom houses and 1 no. 5 bedroom house;
- B) 116 no. apartments in 2 no. 5 storey buildings comprising (54 no. 1 bedroom apartments & 62 no. 2 bedroom apartments, all with terrace or balcony along with solar panels and green roofs at roof level as well as telecommunications infrastructure comprising 9 no. support poles on ballast mounts (to accommodate 1No. 2m 2G/3G/4G antenna & 1No. 5G antenna each) & 3 no. poles on lift overrun (to accommodate 2No. Ø0.3m Microwave links each at roof level of Apartment building B, together with associated equipment and cabinets/shrouds);
- C) 36 no. apartments/duplex apartments in 3 no. 3 storey buildings (18 no. 2 bedroom apartments and 18 no. 3 bedroom duplex apartments) all with terrace;

- D) Amendment to permitted Creche (c. 518sqm) in 'Graydon' (ABP References: TA06S.305343 & ABP-305343-19) to now provide a Creche of c. 778 sq. m of 2 no. storeys;
- E) Open space, hard and soft landscaping (including public lighting & boundary treatment), communal open space for duplex apartments and apartments; along with single storey bicycle/bin stores and ESB substations;
- F) Vehicular access from the Athgoe Road from a new signalised junction along with upgrades to footpath and pedestrian crossing as well as provision of vehicular/pedestrian/cycle link to permitted 'Graydon' (TA06S.305343) 'Newcastle Boulevard' to the east, as well as 423 no. car parking spaces and 370 no. bicycle spaces and all internal roads, cycleways, green routes and paths;
- G) Provision of Surface water attenuation measures and underground attenuation systems, connection to water supply, and provision of foul drainage infrastructure as well as underground local pumping station to Irish Water specifications and all ancillary site development/construction/landscaping works.

1.5 Flood Risk

A separate Site Specific Flood Risk Assessment has been prepared as part of the application.

1.6 Existing Ground Conditions

A detailed site investigation was undertaken by Ground Investigations Ireland in April 2018 to ascertain the existing ground conditions on the overall lands. The ground conditions generally consist of topsoil to a maximum depth of 400mm over sandy gravelly clays with occasional cobbles and boulders over gravel deposits. No bedrock was discovered in the boreholes undertaken on the subject site. (Ground investigation report by Ground Investigations Ireland is included with the planning information.).

2.0 ACCESS AND ROADS

2.1 Overall Road and Access Layout

The proposed development will be accessed from the L6001 Athgoe Road to the west of the site. The access point from the L6001 Athgoe Road to the west of the site is proposed to be a signal controlled junction with crossing facilities for pedestrians. The proposed signalised junction aims to improve pedestrian accessibility to the existing footpath on Athgoe Road and improve connectivity to Newcastle Main Street. There will be a link from the Graydon Development provided under planning reference ABP 305343-19 to the south west of the site. A local street to the north of the site allows access to the village main street through an adjoining development under reference SD18A/0363. The east / west link street alignment allows for the future continuation of the link street through the adjacent school site to generally align with the objectives of the LAP.

In relation to item 3 of on ABP opinion (Ref ABP- 311861-21), the subject proposals include for the provision of the continuation of the east-west Principal Access Road, as per the Newcastle LAP, between the Graydon Residential Development site boundary westwards to Athgoe Road. The design of the road infrastructure has sought to fully respect the LAP objectives in addition to the DMURS design objectives. As per the LAP, the proposed infrastructure allows for additional vehicular and cycle / pedestrian connections to the north via St. Finian's Way and permeable connections to adjacent future potential development lands surrounding the subject site.

Rather than a continuous link through the subject site that could encourage speeds, the alignment of the Principal Access Road includes for 2 no. priority controlled junctions along the route and tighter corner radii which differs from the LAP Principal Access Road alignment but adheres more closely to the principles of DMURS which seek to reduce vehicular speeds and create a more pedestrian / cycle friendly environment.

The road infrastructure within the subject site has been designed taking cognisance of further LAP objectives which can be easily achieved as part of future development schemes within the LAP boundary by tie-ing into the subject proposed road infrastructure.

The road network through the site respects the open space zoned lands to the east of the subject site. The main link through the development has been designed with a number of junctions and a meandering alignment through the development to promote traffic calming and discourage "rat running" through the development. The alignment has been tracked using vehicle tracking software at junctions and horizontal curves.

The proposed link street carriageway is 6.5m wide with a raised adjacent cycle track on each side in the western and eastern area of the site. The cycle facilities deviate from

the link street onto a 4m wide green link in the centre section of the site. Intermittent parallel parking bays are provided as per the Newcastle LAP, 2012.

The development's internal layout has been designed with speed reduction bends to provide traffic calming together with a combination of road vertical and horizontal deflections and forward sight visibility to reduce speeds. Flat top table ramps have been provided at strategic locations to calm traffic at junctions in particular at green-link/vehicular interfaces. Design speed limits of 30km/hr are applied throughout the development as per Design Manual for Urban Roads and Streets (DMURS).

DBFL consulted with SDCC roads department in relation to the Athgoe Road and connectivity from the subject site to Newcastle Main Street. It was agreed to provide a footpath on the eastern side of the carriageway to link the development to the exiting footpath to the north on the Athgoe Road and provide pedestrian connectivity to Newcastle Main Street. In order to provide a 2m footpath the road carriageway will be reduced to 6.5m wide. This layout is displayed on drawing 210026-DBFL-RD-SP-DR-C-1101.

2.2 Green-link Cycle Infrastructure

Green-link cycle infrastructure has been provided throughout the development to link parks, existing roads and local amenities in accordance with the Newcastle LAP 2012. Cycle infrastructure on the east/west link street has been provided as raised adjacent cycle tracks to align with the Newcastle LAP, 2012 and ties into existing cycle infrastructure in the Graydon Development to the east. The cycle facilities deviate from the link street onto a 4m wide green link in the centre section of the site. The proposed north/south green link is provided as a 4m wide shared surface for pedestrians and cyclists migrating between the various amenities and runs through predominantly green open space. This green link is designed as an amenity route for less confident cyclists and children. The green link has been designed with no proposed vehicular crossings. The green link ties into the east/west link street at the south of the proposed site and ties into the east/west link street to the north. The green link has been designed in accordance with TII TD300 (Rural Cycleway Design Guide) and the National Cycle Manual.

Given the low vehicular traffic volumes within the internal local streets (<2,000 AADT), cyclists will share the road surface with vehicular traffic as per Section 1.7 of the National Cycle Manual.

2.3 Road Layout Design

The proposed development's road layout is shown on drawing 210026-DBFL-RD-SP-DR-C-1101. Drawing number 210026-DBFL-RD-SP-DR-C-1104 outlines the road hierarchy and possible future connections. The standard road cross-sections on

drawing 210026-DBFL-RD-SP-DR-C-5101 Typical Road Construction Details Sheet 1 will comprise the following;

- Link Streets providing typically 6.5m carriageway, 2m raised adjacent cycle tracks and 2.0m wide footways on each side with intermittent parallel parking bays as per Newcastle LAP, 2012. A 750mm buffer zone is provided between parking bays and cycle tracks as per the requirements of the National Cycle Manual.
- Residential Local Streets typically 5m to 5.5m wide carriageway with 2m footways and intermittent 2.4m wide public parking bays.
- Shared Home-Zone Streets 4.8m to 6.0m shared surface with 1.5m wide vulnerable user strips and different colour contrast and texture to Local Streets (no footpaths).

Maximum road corner radii of 4.5m are provided within the local streets and 6m on the main access road as per DMURS and the requirements of South Dublin County Council.

2.4 Pavement Design Standards

The main internal access roads are designed in accordance with the Design Manual for Urban Roads and Streets (DMURS) and Local Authority taking in charge requirements. Refer to drawing 210026-DBFL-RD-SP-DR-C-5101 for the proposed road construction thicknesses based on an assumed existing ground minimum design CBR of 3%. Actual CBRs and ground conditions will be confirmed by detailed site investigations prior to construction.

2.5 Traffic & Transportation

A separate Traffic and Transportation Assessment has been prepared as part of this application and is included in the overall planning pack.

2.6 Vehicle Tracking

The proposed development has been tracked to show that the development's proposed turning heads will accommodate a large refuse vehicle. Internal radii have been tracked to ensure a car and refuse vehicle can pass at the same time. Internal radii at the proposed signalised junction at L6001 Athgoe Road have also been tracked to ensure a car and refuse vehicle can pass at the same time

2.7 Driveway Access

Access driveways are set to accommodate a targeted maximum 1:20 driveway gradient. All driveways are permeable paving within private curtilage. Entrances to driveways in public footpaths comprise drop kerbs with 150mm deep concrete pavement.

2.8 Quality Audit

An independent DMURS Quality Audit (including Road Safety Audit, Access Audit, Cycle Audit and Walking Audit) has been undertaken by Bruton Consulting Engineers and no adverse road safety or quality concerns have been raised for the subject site. All recommendations from the Quality Audit have been incorporated into the design for the subject site. A copy of the Quality Audit is provided in Appendix H. The proposed creche will use the permitted Graydon road network.

3.0 SURFACE WATER DRAINAGE

3.1 Existing Surface Water

The existing site is predominantly greenfield, and the topography of the site generally falls to the north towards Main Street. A network of existing drainage ditches currently drains the site. Drainage infrastructure has been constructed as part of the Graydon development (under planning reference ABP 305343-19) to the east of the subject site in accordance with the Greater Dublin Strategic Drainage Study (GDSDS). The subject sites surface water network will not connect to any surface water infrastructure constructed under the Graydon development. There are existing 225mm surface water sewers located in Athgoe road to the west of the subject site.

An existing "pond" is identified on the Newcastle LAP, 2012 in the south western area of the subject site. DBFL have reviewed this area on site and no pond was present but it appears there is a depression in this area of the site based on the topography. Some evidence of an overland flow route is present on historic aerial mapping.

In response to the SDCC Report (Ref. SHD2ABP-311861-21) and ABP Opinion Item 10 (ABP- 311861-21) a meeting and consultation with SDCC drainage department took place. The existing surface water outfalls were CCTVd in order to establish where they outfall to. The majority of the site outfalls to an existing drainage ditch within the site which flows to a pond to the rear of the Old Glebe on Main Street and ultimately follows an undefined network of drainage ditches through agricultural lands within the River Liffey catchment. Similarly the surface water network on the Athgoe Road was surveyed to establish in so far as possible its outfall. It outfalls to a drainage ditch on the Hazelhatch road and follows an undefined network of drainage ditches through agricultural lands within the River Liffey catchment. Some damage to the surface water network was identified in the survey on Athgoe Road and this was discussed with SDCC for their review. It is noted that the run-off from the site is restricted to greenfield run-off rates to mimic the current scenario.

CCTV report is included in Appendix I.

3.2 Surface Water Drainage Strategy

3.2.1 General

An overall surface water drainage strategy was developed by DBFL Consulting Engineers for the overall development site including the Graydon development under planning reference ABP 305343-19 and future zoned lands. This strategy is shown on drawing number 210026-DBFL-CS-SP-DR-C-1202 which outlines each catchment and its corresponding attenuation facility. Surface water runoff from the development will be

attenuated to greenfield runoff rates (Qbar) in accordance with the Greater Dublin Strategic Drainage Study (GDSDS).

Where possible, attenuation facilities have been designed as above ground storage in order to maximize the use of SuDs and limit the requirement of underground tanks to promote biodiversity. This approach was adopted in line with SDCCs Sustainable Drainage Explanatory Design Guide 2022. The open ponds have been designed to cater for the 1:5 year storm in a low flow channel which will be predominantly wet and the 1:100 year storm will be stored at the next level which will be predominantly dry and lend itself to a usable amenity space except in adverse weather conditions. Where design constraints did not allow for open ponds, attenuation facilities will store up to the 30-year critical storm in underground stormtech attenuation systems and shallow detention basins will be used to store surface water for storms between the 30 year and the 100 year critical storms. The detention basins will be incorporated into the landscape plan with gently sloping side slopes. The maximum open water depth in the detention basins will be 1.14m in the 100 year critical storm. This arrangement ensures that the detention basins remain mainly dry and usable as an amenity space, with the detention basins only utilised during extreme events. An example of a useable detention basin is shown below in Figure 3.1. Typical construction details are shown on drawings 210026-DBFL-CS-SP-DR-C-1203,1204,1205,1206 & 1208. Calculations are included in Appendix B and C.

Figure 3.1 Example underground storage and detention basin from the Graydon Development

The surface water drainage system will collect storm-water run-off generated from the proposed residential development using traditional pipe-work and manholes laid along the main access roads collecting run-off from impermeable road surfaces via gullies

SURFACE DETENTION MAJOR STORMS

SUBSURFACE DETENTION MINOR STORMS

and adjoining areas. Swales will be utilised as a SuDs measure where possible to drain adjacent roads and green links. Swales and other SuDs measures such as tree pits, permeable paving and green roofs have been incorporated into the drainage design to reduce the run-off volume and improve run-off water quality as described in Section 3.3 below.

3.2.2 Compliance with Surface Water Policy

Surface water management for the proposed development is designed to comply with the Greater Dublin Strategic Drainage Study (GDSDS) policies and guidelines and the requirements of South Dublin County Council. The guidelines require the following four main criteria to be provided by the development's surface water design;

- Criterion 1: River Water Quality Protection satisfied by providing interception storage using permeable paving in driveways, greenroofs, treatment of run-off within the SUDS features e.g. permeable paving for driveways/parking bays, swales and within the attenuation storage system and oil separators on the main surface water outfalls from the development.
- Criterion 2: River Regime Protection satisfied by attenuating run-off with flow control devices prior to discharge to the outfall.
- Criterion 3: Level of Service (flooding) for the site satisfied by the Site being outside the 1000 year coastal and fluvial flood zones, (See Flood Risk Assessment). Pluvial flood risk addressed by development designed to accommodate a 100 year storm as per GDSDS. Planned flood routing for storms greater than 100 year level, considered in design, the development has been designed to provide an overland flood route from the development towards the surface water outfall.
- Criterion 4: River flood protection attenuation and long term storage provided within the SUDS features e.g. permeable paving construction, swales and attenuation facility.

3.2.3 Underground Storage Justification

Attenuation facility 1 located in Sean Feirm Park has been design as an underground stormtech SC740 tank with an above ground detention basin. An underground tank has been utilised to store the 1:30 year storm to allow the above ground detention basin store the 1:100 year critical storm event. This approach means the above ground detention basin will remain dry outside off critical storm events and increase the usable space in Sean Feirm park for the future residents of the development. If an underground tank was not utilised a significant area of Sean Feirm park would be taken up by a permanent wet pond which would not be usable as an amenity area. Maintaining as

much usable space as possible is important in providing a high quality living environment for all is well established.

Attenuation facility 3 has also has been designed as a underground stormtech SC740 tank with an above ground detention basin. The space constraints and site levels at attenuation facility 3 do not allow for the installation of a pond due to the requirement for gently sloping side slopes.

At all other attenuation areas, open attenuation has been utilised where it could be successfully integrated into the landscape.

3.2.4 Ground Investigation

Site investigation was undertaken on the Subject Site which included trial pits, boreholes and infiltration tests. Topsoil over clays over gravel was encountered with no bedrock discovered in the boreholes taken on the subject site. Infiltration tests in accordance with BRE Digest 365 were carried out at 2 locations on site. The results indicated negligible soakage rates therefore no benefit was taken from infiltration in the design of the attenuation facilities although some infiltration will naturally occur.

3.3 SUDS

In accordance with the GDSDS it is proposed to use Sustainable Urban Drainage systems (SUDS) for managing storm-water for the proposed development. The aim of the SUDS strategy for the site will be to;

- Attenuate storm-water runoff.
- · Reduce storm-water runoff.
- Reduce pollution impact.
- Replicate the natural characteristics of rainfall runoff for the site.
- Recharge the groundwater profile

The proposed layout of the drainage and SUDS is detailed on drawing 210026-DBFL-CS-SP-DR-C-1201.

An assessment of the potential SuDS that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753. The SuDS elements which were found applicable to the proposed scheme design and layout include the following:

- 1. Permeable paving driveways for all on-curtilage driveways
- 2. Green link to drain to swales for reduction and treatment of run-off
- 3. The attenuation storage systems will be an on-line system for treatment of runoff. The storage systems will be designed to maximise water quality.

- 4. Above ground attenuation provided where possible
- 5. Down pipes from roof surfaces diverted into driveway permeable paving to allow infiltration of run-off from roofs.
- 6. Green roofs at apartment blocks
- 7. Gully connections to tree pits
- 8. A petrol interceptor to be provided before the outfalls from the subject site.

The incorporation of the above SuDS elements will provide a sustainable manner in which to disperse surface water from the site, encourage groundwater recharge and provide treatment of run-off and subsequent improvement of discharge quality.

Following submission of the stage 2 application and subsequent feedback and consultation with SDCC a number of underground attenuation systems have been removed. In some instances these have been maintained and justification is provided in section 3.2.3. Overground attenuation is provided in lieu of the below ground attenuation and will enhance provide additional nature based SuDs solutions along with promoting biodiversity.

The proposed headwalls in the attenuation zones will be appropriately landscaped and incorporated into the landscape at each location.

3.4 Surface Attenuation Storage

Surface water run-off from the subject site, future phases and zoned lands as outlined on drawing number 210026-DBFL-CS-SP-DR-C-1202) will be attenuated to greenfield runoff rates (Qbar). This is calculated as 24.51l/s using the Institute of Hydrology equation as recommended in the Greater Dublin Strategic drainage Study (GDSDS) based on an area of 11.63Ha which is associated with the greater site area. The overall catchment and a catchment plan strategy is shown on drawing number 210026-DBFL-CS-SP-DR-C-1202.

There are 5 catchments within the subject site. Catchment 2A, catchment 2D, catchment 2E and catchment 2F are within the subject site and will share the same outfall to an existing drainage ditch as catchments 2B, and catchment 2C which are included as future residential developments and will be attenuated. Catchment 3 is also within the subject site and will outfall to the existing surface water network in the Athgoe road. Refer to figure 3.4 below for indicative overall catchments areas within the subject site. Refer to drawing number 210026-DBFL-CS-SP-DR-C-1202 for the Surface Water Drainage Strategy for permissible outflow.

Figure 3.4 – Overall catchment areas (Note: the creche will be within the permitted Graydon development network and catchment)

Soil Type 2 has been used to calculate Qbar and the attenuation storage. The SOIL value was selected using Table 4.5 of the Flood Studies report – The Classification of Soils from Winter Rainfall Acceptance with the following criteria:

Drainage Group	2 - Commonly waterlogged within 60cm
Depth to impermeable layer	2 - 80-40cm
Permeability group (above 'impermeable' layers or to 80cm)	2 - Medium
Slope	1 – 0 -2°

Table 3.1 Summary of Site Characteristics

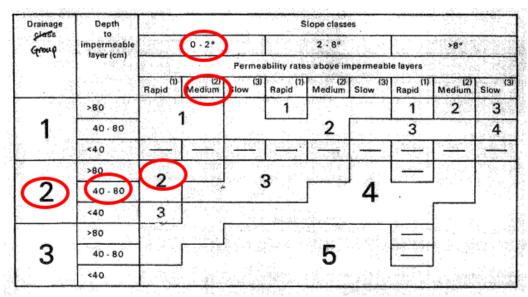


Table 3.2 The classification of soils by winter rain acceptance rate from soil survey data

Run-off from the proposed development will be limited/attenuated using vortex flow control devices (Hydrobrake or equivalent) at each outfall limiting discharge to greenfield runoff rates (Q_{bar}) in accordance with the GDSDS for the total area of the site within the catchment of the new drainage networks.

The resultant design attenuation volumes, discharge limits, types of storage and storage volumes for each catchment are summarised in Table 3.1 (See Appendix D for detailed calculations).

Catchment	Catchme nt Area (m²)	Storage System Type	Calculated Allowable Outflow (I/s)	Storage Volume Required (m³) (100 years) calculated using Microdrainage	Storage Volume Provided (m³) (100 years)
2A	37,910	Detention Basin & stormtech	8.02	1,059	1,072
2D	11,392	Pond	18.87 (8.02 catchment 2A +2.41	208	283

			catchment 2D+5.15catc hment 2B+1.55 catchment 2C+1.74 catchment 2F)		
3	10,220	Detention Basin & stormtech	2.16	215	233
2E	16,718	Pond	3.54	404	531
2F	8,242	Upper and Lower pond with weir control	1.74	157	170
2B (Future Residential Site)	24,343	TBC	5.15	TBC	TBC
2C (Future Residential Site)	7,323	TBC	1.55	TBC	TBC
Total	115,438		24.60	2,043	2,289

Table 3.3 - Surface Water Attenuation Storage and Discharge Limits

DBFL have calculated the attenuation volumes using Microdrainage as shown in Table 3.3 above, the following should be noted in relation to Microdrainage:

- Micro Drainage is the industry standard drainage design suite in the UK and Ireland for the last 30 years. Microdrainage is used by the majority of engineering consultancies and is the most recognised drainage calculation method by local authorities.
- Microdrainage models the variable head/ discharge relationship of the hydrobrake and models the actual tank shape

- Microdrainage models the time of concentration the time needed for water to flow from the most remote point in the drainage network to the tank. This becomes significant in large sites such as the subject site.
- The M5-60 and r value (M5-60:M5-2Day) are sourced from Met Eireann and inputted to Microdrainage. The inflow hydrograph for each storm is then calculated by Microdrainage using the Flood Studies Report method as recommended by Section 6.4 of the GDSDS.
- Microdrainage uses the unit hydrograph method at 2min intervals to model the storm, i.e. it models the flow into the system and flow out of the system every 2 minutes for all storm events (38 storm events). Therefore it can accurately calculate the maximum storage volume required in the system for the critical storm.

Typical details and cross-sections of the proposed surface water attenuation facilities are provided on drawings 210026-DBFL-CS-SP-DR-C-1203,1204,1205,1206 & 1208.

3.5 Interception Volume

To prevent pollutants or sediments discharging into water courses, the GDSDS requires "interception storage" to be incorporated into the development. This interception storage is designed to receive the run-off for rainfall depths of 5mm up to 10mm if possible. The SUDS features including permeable driveways, tree pits, green roofs, swales and "open bottom" attenuation facilities will provide the necessary interception volume required by the GDSDS.

3.6 Design Standards

Drainage is designed in accordance with the Greater Dublin Regional Code of Practice for Drainage Works. Surface water pipe-work was sized using the Microdrainage Windes drainage modelling software. The following parameters apply to the design:

• Return period for pipe work 2 years,

check 30 year, no flooding.

check 100 year, flooding in designated areas only.

- Time of entry 4 minutes
- Discharge Limit 24.6 l/s @ 100 years for subject site
- Pipe Friction (Ks) 0.6 mm
- Minimum Velocity 1.0 m/s
- Standard Average Annual Rainfall 795mm (Met Eireann 1km2 grid)

- M5-60 17.7mm (Met Eireann)
- Ratio r (M5-60/M5-2D) 0.271 (Met Eireann)
- Attenuation Tank Storm Return Event GDSDS Volume 2, p61, Criterion 3

30 year no flooding on site.

100 year check no internal property flooding. Flood routing plan. FFL freeboard above 100 year flood level. No flooding to adjacent areas.

- Climate Change Allowance 20%
- · Factor of Safety for infiltration 2.0
- Runoff from Roads and Footpaths 100%
- Runoff from houses draining direct to SW network: 100%
- Runoff from houses draining to permeable paving: 80%
- Runoff from green roofs: 75%
- Runoff from Roads, footpaths & Green-links draining to swales 80%
- Runoff from Permeable Paving Driveways 75%
- Runoff from Open Grassed Areas 15%

Surface water sewers have been designed in accordance with IS EN 752 and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The minimum pipe diameter for public surface water sewers is 225mm. Private drains within the proposed development will be 150mm as outlined on DBFL drawing 210026-DBFL-CS-SP-DR-C-1201.

Surface water sewer modelling results for the main drainage networks is included in Appendix C. The surface water drainage network simulation results are included in Appendix C which demonstrate that stormwater is contained below ground for the 1:30 year critical storm and within the open detention basins for the 1:100 year critical storm.

3.7 Drainage Ditches and Overland Flow

A network of drainage ditches exist within the existing hedgerows on the subject site. In general it is proposed to maintain these drainage ditches and incorporate them into the proposed development. Culverts and headwalls are required where roads cross the existing ditches. As noted in Section 3.1 above, an existing "pond" is identified on the Newcastle LAP, 2012 in the south western area of the subject site. DBFL have reviewed this area on site and no pond was present but it appears there is a depression in this area of the site based on the topography. Some evidence of an overland flow route is

present on historic aerial mapping and appears to be emanating from an existing drainage ditch.

DBFL undertook a catchment analysis on the ditch upstream of the existing depression using the Institute of Hydrology (IOH) formula for small catchments less than 25km². The flow for the 1% AEP event was calculated as 0.21m³/s. This flow was also multiplied by the Standard Factorial Error (1.65) for the IOH formula factored up by 20% for climate change. The resulting design flow for the culverts sizing was calculated as 0.25m³/s.

A 600m diameter culvert and swale have been designed to convey any over land flow from the depression to the existing ditch network as shown on drawing 210026-DBFL-CS-SP-DR-C-1201. Refer to Appendix D for detailed design calculations.

3.8 Climate Change

Rainfall values for the proposed development are sourced from Met Eireann to calculate the FSR input hydrograph for the drainage design as required by the GDSDS. The design rainfall intensities were increased by a factor of 20% to take account of climate change, as required by the GDSDS for attenuation storage design.

3.9 Pluvial Flooding Provision

The surface water network, attenuation storage and site levels are designed to accommodate a 100 year storm event and includes climate change provision. Floor levels of houses are set above the 100 year flood levels by a minimum of 0.5m for protection. For storms in excess of 100 years, the development has been designed to provide overland flood routes along the various development roads towards the surface water drainage outfall and adjoining roads. Refer to DBFL's Site Specific Flood Risk Assessment for further details.

3.10 Surface Water Quality Impact

Run-off rates from the site are controlled by vortex flow control devices. Surface water management proposals for the development also incorporate the following to reduce its impact;

- Designed in accordance with GDSDS requirements;
- Incorporates SUDS features e.g. permeable paving in high risk parking areas at the front of houses;
- On-line attenuation/infiltration facilities with an oil separator prior to discharge to a public surface water sewer.

4.0 FOUL DRAINAGE

4.1 Existing Foul Drainage

The existing site is predominantly greenfield and therefore has no foul loading at present. Foul infrastructure has been constructed as part of the Graydon development to the east of the subject site in accordance with the Irish water code of practice. A 225mm foul sewer is located in the Athgoe Road to the west of the site. Irish Water have indicated that the foul sewer outfalls to Peamount Pump Station where there are some network constraints.

The existing foul sewers are shown on drawing 210026-DBFL-CS-SP-DR-C-1201.

4.2 Consultation with Irish Water

An Irish Water Pre-Connection Enquiry form was submitted to Irish Water and an Irish Water Feedback form has been received outlining that a Wastewater connection can be facilitated for the proposed development. Refer to Appendix A for a copy of the confirmation of feasibility. DBFL and Cairn Homes have liaised with Irish Water regarding the Newcastle Local Network Reinforcement Project and Newcastle Pumping Station. It was agreed that a pumping station within the subject site to pump back to the Graydon development was the optimum solution as the foul outflow would then avoid the network constraints in Newcastle Village and Peamount Pump Station. Cairn Homes have also entered into a Project Works Services Agreement (PWSA) on Newcastle Pumping Station to establish if any constraints exist at the pumping station. Cairn Homes entered into this PWSA in April 2021 and agreed to fund the study of the pumping station for Irish Water. The study is ongoing and preliminary results are expected imminently. Cairn Homes, DBFL and Irish Water hold regular meetings on the progress of the study.

4.3 Design Strategy

The proposed foul drainage system for the subject site will connect to the existing 225mm diameter foul sewer in the Graydon development provided under planning reference ABP 305343-19. A Wastewater Pumping Station is proposed to serve the majority of the subject site and forms part of this planning application. Foul drainage from the proposed development will drain to a proposed pumping station at the north of the site by gravity before being pumped back to a stand-off manhole at the south of the site and discharging to Graydon development infrastructure. The capacity of the foul infrastructure in the Graydon development was reviewed and found to have to have sufficient capacity to accommodate the subject site. The Creche will use the permitted Graydon infrastructure.

A section to the southeast of the subject site will not make use of the pumping station due to favourable levels and will flow by gravity and discharge to the Graydon development where it will be connected by gravity.

Individual houses will connect to the 225mm diameter foul drains via individual 100mm diameter house connections, as per Irish Water Code of Practice for Wastewater Infrastructure.

A Statement of Design Acceptance has also been received from Irish Water and included in Appendix A.

The proposed foul sewer network is shown on DBFL drawing 210026-DBFL-CS-SP-DR-C-1201.

4.4 Design Calculations

Foul sewers have been designed in accordance with the Building Regulations and specifically in accordance with the principles and methods set out in the Irish Water Code of Practice, IS EN752 (2008), IS EN12056: Part 2 (2000) and the recommendations of the 'Greater Dublin Strategic Drainage Study', (GDSDS).

The following criteria have been applied:

Demand 446l/dwelling/day (based on 2.7 persons per house, a

per capita wastewater flow of 150 litres per head per

day and a 10% allowance for infiltration)

60l per person per day for Creche

Discharge units 14 units per house (as BS8301)

Pipe Friction (Ks) 1.5 mm

Minimum Velocity 0.75 m/s (self-cleansing velocity)

Maximum Velocity 2.5 m/s

Frequency Factor 0.5 for domestic use

Manhole Depths < 5.0m

Foul sewer design calculations from Windes are provided in Appendix F.

All foul sewers and manholes will be constructed in accordance with the Irish Water Standard Details and the Irish Water Code of Practice for Wastewater.

Longitudinal sections will be provided on drawings 210026-DBFL-CS-SP-DR-C-3205, 210026-DBFL-CS-SP-DR-C-3206, 210026-DBFL-CS-SP-DR-C-3207 & 210026-DBFL-FW-SP-DR-C-3208.

4.5 Compliance with Irish Water Standards

The proposed foul sewer design and layout is in accordance with the Irish Water Code of Practice for Wastewater Infrastructure and The Irish Water Wastewater Infrastructure Standard Details.

4.6 Foul Environmental Impacts

This application comprises 280 residential units and a creche in the existing Graydon development. The majority of the development will discharge by gravity to a proposed pumping station at the subject site before being pumped back to the Graydon development where by gravity sewers it will discharge to the existing Newcastle Pumping Station which pumps foul water to a gravity sewer at the Rathcoole Interchange which ultimately discharges to Ringsend waste water treatment works. The estimated average daily load from the development is 190m³ with a total average BOD loading of 32 Kg per day. See below for calculations.

PREDICTED DEVELOPMENT FOUL FLOWS						
Use Type	No. of Units / Area	Occupancy Rate	Populatio n (P)	Loading (G) (I/day/person) *	Daily Loading (PG) (I/day)	Daily Loading (I/s)
Residential	280	2.7 people/ dwelling	756	150	113,400	1.32
Creche	700m²	20	35	60	2100	0.02
				Tota	l Loading (I/s)	1.34
Growth Factor					1	
Infiltration @ 10% (as Cop App C 1.2.4)					0.13	
Dry Weather Flow I/s					1.47	
Residential Peaking factor (as CoP App C 1.2.5)					6	
Residential Design Foul Flow (I/s)					8.844	
*Flow rates calcu	*Flow rates calculated using IW CoP for Wastewater Infrastructure Appendix F					

Table 4.1 - Development Foul Flow Calculations

4.7 Pumping station

As discussed in Section 4.3 a Wastewater Pumping Station is proposed for the site. The pumping station layout has been developed with the project Landscape Architect to integrate the pumping station into the open space. The majority of the pumping station infrastructure will be located below ground in the form of tanks. These tanks can be landscaped over, and the only indication of their presence is the locked access covers.

As per Irish Water's latest Code of Practice for Wastewater, welfare buildings are not required at pumping stations of this size and the only above ground infrastructure required is the control kiosk and wet kiosk. Example of where similar kiosks have been incorporated into landscaped open space within residential developments is shown in Figure 4.1 and 4.2 below.

Figure 4.1 – Example foul pumping station

Figure 4.2 – Example of foul pumping station

The pumping station will be constructed in compliance with Irish Water Code of Practice for Wastewater Infrastructure (IW-CDS-5030-03) and Irish Water Technical Standard – Wastewater Pumping Stations & Rising Mains (IW-TEC-800-02). The proposed pumping station layout is shown on drawing numbers 210026-DBFL-CS-SP-DR-C-5111 & 210026-DBFL-CS-SP-DR-C-1207.

The design parameters for the proposed pumping station are shown below. Detailed calculations are provided in Appendix F.

	Pump Station
Residential Units Subject Site	238
Future Residential Units – zoned lands to the north and east	32
Future Residential Units – Zoned lands to the south	82
Total Residential Units	352
DWF	157m³/day

PE	1200
Pass Forward Flow	440m³/day
Pump Design Flow	6l/s
Pump Design Head	9.04m
Rising Main Dia	160mm OD (PE 100)
Emergency Storage Volume	144m³

210026-DBFL-CS-SP-RP-C-0001 IDR

5.0 WATER SUPPLY AND DISTRIBUTION

5.1 Existing Water supply

The existing site is predominantly greenfield and therefore has no water supply at present. Water supply infrastructure has been constructed as part of Graydon development to the east of the subject site (under planning reference ABP 305343-19) in accordance with the Irish water code of practice. There is a 100mm and 150mm watermain along the L6001 to the west of the subject site.

The existing watermains are shown on drawing 210026-DBFL-WM-SP-DR-C-1301.

5.2 Development Water Main Layout

The development's proposed water-main distribution system is shown on drawing 210026-DBFL-WM-SP-DR-C-1301.

It is proposed to connect to the existing 250mm watermain provided in the Graydon development at Newcastle boulevard to the south east of the site through the link street of the proposed site. A closed valve connection is also proposed to the existing watermain in Athgoe road. The proposed 250mm trunk watermain will serve a number of 150mm diameter watermain loops throughout the development. A number of 100mm watermain loops will be fed from the 150mm watermains along the Local Streets.

The creche will use the permitted Graydon development water supply.

The selected pipe material options for the development will be PE-100.

Individual houses will have their own connections to the distribution main via service connections and boundary boxes. Individual service boundary boxes will be of the type to suit Irish Water and to facilitate domestic meter installation.

Hydrants are provided for fire-fighting at locations to ensure that each dwelling is within the required Building Regulations distance of a hydrant.

5.3 Compliance with Irish Water Standards

The proposed watermain design and layout is in accordance with the Irish Water Code of Practice for Water Infrastructure and The Irish Water, Water Infrastructure Standard Details.

5.4 Water Demand & Conservation

The average daily domestic demand (ADDD) for the proposed development is approximately 116m³ and an average day / peak week demand of 144.3m³ has been calculated as outlined in the Irish Water Code of Practice for Water Infrastructure.

The average water daily domestic demand is estimated to be 1.34l/s. The peak demand for sizing of the pipe network (5 times the average day, peak week demand) is calculated as 8.35 l/s. See calculations below in Table 5.1.

An Irish Water Pre-Connection Enquiry form has been submitted to Irish Water and an Irish Water Feedback form has been received outlining that a Watermain connection is possible for the proposed development. A network extension from the east of the subject site through the Graydon development has been provided as part of the previously permitted Graydon development. Refer to Appendix A for confirmation of feasibility.

A Statement of Design Acceptance has also been received from Irish Water and included in Appendix A.

WATER DEMAND							
Use Type	No. of units / Area	Occupancy Rate	Population (P)	Average daily domestic demand (I/day)	Average daily domestic demand (I/s)	Average day/peak week demand (l/s)	Peak hour water demand (I/s)
Residential	280	2.7 per dwelling	756	113,400	1.32	1.65	8.25
Creche	700m²	20	35	60	0.02	0.025	0.12
Peak hour water demand (I/s)						8.37	
*Flow rates calculated using IW CoP for Watermains							

Table 5.1 - Development Water Demand

Appendix A
IW CONFIRMATION OF
FEASIBILITY & STATEMENT OF
DESIGN ACCEPTANCE

Conor O' Loughlin Ormond House Upper Ormond Quay Dublin 7 D07N5YH

9 June 2022

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Design Submission for Newcastle, South Dublin, Dublin (the "Development") (the "Design Submission") / Connection Reference No: CDS22003002

Dear Conor O' Loughlin,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at www.water.ie/connections. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "Self-Lay Works"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative:

Name: Dario Alvarez Email: dalvarez@water.ie

Yours sincerely,

Yvonne Harris

Gronne Hassis

Head of Customer Operations

Appendix A

Document Title & Revision

- 210026-DBFL-WM-SP-DR-C-1301 Proposed Watermain Layout
- 210026-DBFL-CS-SP-DR-C-1201 Proposed Drainage Layout
- 210026-DBFL-CS-SP-DR-C-3205 Foul Sewer Longitudinal Sections Sheet 1
- 210026-DBFL-CS-SP-DR-C-3206 Foul Sewer Longitudinal Sections Sheet 2
- 210026-DBFL-CS-SP-DR-C-3207 Foul Sewer Longitudinal Sections Sheet 3

Standard Details/Code of Practice Exemption: N/A

For further information, visit www.water.ie/connections

Notwithstanding any matters listed above, the Customer (including any appointed designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay Works. Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

Conor O' Loughlin DBFL Consulting Engineers Ormond House Upper Ormond Quay Dublin 7

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

31 May 2022

Re: CDS22003002 pre-connection enquiry - Subject to contract | Contract denied Connection for Housing Development of 309 unit(s) at Newcastle, South Dublin, Dublin

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Newcastle, South Dublin, Dublin (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.
Water Connection	Feasible Subject to upgrades
Wastewater Connection	Feasible Subject to upgrades
	SITE SPECIFIC COMMENTS
	A network extension of approximately 300m of new 300mm ID watermain will be required to connect to the existing 450mm DI main to the East of the site (Red line in below mapping). These extension works are not currently on the Irish Water investment plan therefore, the applicant will be required to fund these local network upgrades. The fee will be calculated at a connection application stage.
Water Connection	A new 200mm ID connection (Green line below) will be made to the new
	Section of 300mm watermain. A bulk meter will be required on this connection main.
	A secondary 150mm ID connection is to be made to the existing 6" AC main to the West of the site (Orange line in mapping below). This connection main is to be fitted with a control valve which is to be set to closed during normal operations.


Wastewater Connection

There is an ongoing Project Works Services Agreement to establish the upgrades required at Newcastle Wastewater Pumping Station and the immediate downstream network. The customer will be required to fund the upgrades.

The connection for the development can be facilitated in the <u>interim</u> with the installation of an on-site pumping station with 24-hour storage to cater for the full development. The customer will also be responsible for any additional maintenance requirements such as dosing. The new pumping station is to discharge to the existing development to the East which bypasses the constrained network to the North of the development. Forward flows from the development are to be managed via telemetry link between the new on-site pumping station and the Newcastle pumping station.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.

- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Kevin McManmon from the design team at kmcmanmon@water.ie For further information, visit **www.water.ie/connections**.

Yours sincerely,

Yvonne Harris

Gronne Hassis

Head of Customer Operations

Appendix B
SURFACE WATER NETWORK
CALCULATIONS

DBFL Consulting Engineers	Page 1	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:37	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_1

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 1

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ıse	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1 000	33.252	0 166	200 3	0.084	4.00		0 0	0.600	0	225	Pipe/Conduit	<u>a</u>
	10.400			0.067	0.00			0.600	0		Pipe/Conduit	_
	62.621			0.045	0.00			0.600	0		Pipe/Conduit	•
	69.106			0.045	0.00			0.600	0		Pipe/Conduit	•
1.003		0.046		0.043	0.00			0.600	0		Pipe/Conduit	•
1.004	9.223	0.040	200.0	0.000	0.00		0.0	0.000	O	223	ripe/conduit	●
2.000	24.880	0.711	35.0	0.054	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
2.001	71.262	0.356	200.2	0.128	0.00		0.0	0.600	0	225	Pipe/Conduit	
2.002	12.727	0.069	185.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	
2.003	8.756	0.052	167.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΒ	ase	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	54.41	4 . 60	93.369	0.084		0.0	0.0	2.5	0.92	36.6	14.9
1.001	53.64	4.79	93.203	0.151		0.0	0.0	4.4	0.92	36.6	26.3
1.002	49.52	5.92	93.151	0.196		0.0	0.0	5.3	0.92	36.6	31.5
1.003	45.80	7.17	92.838	0.241		0.0	0.0	6.0	0.92	36.6	35.9
1.004	45.35	7.34	92.492	0.241		0.0	0.0	6.0	0.92	36.6	35.9
2.000	56.21	4.19	94.575	0.054		0.0	0.0	1.6	2.22	88.2	9.9
2.001	51.04	5.48	93.864	0.182		0.0	0.0	5.0	0.92	36.6	30.2
2.002	50.27	5.70	93.508	0.182		0.0	0.0	5.0	0.96	38.1	30.2
2.003	49.79	5.84	93.439	0.182		0.0	0.0	5.0	1.01	40.1	30.2

DBFL Consulting Engineers		Page 2
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:37	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

PN	Length (m)	Fall	Slope (1:X)	I.Area (ha)	T.E.	Bas		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3 000	51.375	n 500	87.4	0.132	4.00		0 0	0.600	0	225	Pipe/Conduit	
3.001	70.339		52.0	0.132	0.00			0.600	0	225	Pipe/Conduit	€
												_
4.000	17.521	0.088	200.0	0.137	4.00		0.0	0.600	0	225	Pipe/Conduit	♂
4.001	53.542	0.268	200.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	₫*
4.002	15.093	0.067	225.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	0
5 000	53.155	0 401	132 6	0.080	4.00		0 0	0.600	0	225	Pipe/Conduit	€
	19.808	0.073	271.3	0.000	0.00			0.600	0	225	Pipe/Conduit	
5.002				0.000	0.00			0.600	0	225	Pipe/Conduit	Ą
	28.718			0.000	0.00			0.600			-	₽
5.003	20./10	0.220	130.5	0.000	0.00		0.0	0.600	0	223	Pipe/Conduit	₫*
4.003	12.697	0.063	201.5	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
4.004	24.449	0.144	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
4.005	10.047	0.067	149.9	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
4.006	13.580	0.102	133.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	Ğ
4.007	15.223	0.106	143.6	0.092	0.00		0.0	0.600	0	225	Pipe/Conduit	ě
4.008	15.978	0.094	170.0	0.013	0.00		0.0	0.600	0	300	Pipe/Conduit	ĕ
4.009	13.911	0.082	169.6	0.013	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
4.010	9.170	0.055	166.7	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
4.011	9.262	0.054	171.5	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	•
4.012	62.815	0.819	76.7	0.161	0.00		0.0	0.600	0	300	Pipe/Conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
3.000	54.37	4.61	95.870	0.132	0.0	0.0	3.9	1.40	55.6	23.3	
3.001	51.84	5.26	95.282	0.261	0.0	0.0	7.3	1.82	72.3	44.0	
4.000	55.63	4.32	95.885	0.137	0.0	0.0	4.1	0.92	36.6	24.8	
4.001	51.73	5.29	95.797	0.137	0.0	0.0	4.1	0.92	36.6	24.8	
4.002	50.70	5.58	95.530	0.137	0.0	0.0	4.1	0.87	34.5	24.8	
5.000	53.67	4.78	96.975	0.080	0.0	0.0	2.3	1.13	45.1	14.0	
5.001	52.05	5.20	96.574	0.080	0.0	0.0	2.3	0.79	31.4	14.0	
5.002	50.21	5.72	96.501	0.080	0.0	0.0	2.3	0.84	33.5	14.0	
5.003	48.83	6.14	96.391	0.080	0.0	0.0	2.3	1.14	45.4	14.0	
4.003	48.11	6.37	95.463	0.217	0.0	0.0	5.7	0.92	36.5	33.9	
4.004	46.91	6.77	95.390	0.217	0.0	0.0	5.7	1.00	39.8	33.9	
4.005	46.46	6.93	95.246	0.217	0.0	0.0	5.7	1.07	42.4	33.9	
4.006	45.91	7.13	95.179	0.217	0.0	0.0	5.7	1.13	45.0	33.9	
4.007	45.29	7.36	95.139	0.309	0.0	0.0	7.6	1.09	43.3«	45.5	
4.008	44.72	7.59	94.958	0.322	0.0	0.0	7.8	1.20	85.0	46.8	
4.009	44.24	7.78	94.864	0.335	0.0	0.0	8.0	1.20	85.1	48.2	
4.010	43.93	7.90	94.782	0.335	0.0	0.0	8.0	1.21	85.9	48.2	
4.011	43.62	8.03	94.727	0.335	0.0	0.0	8.0	1.20	84.6	48.2	
4.012	42.28	8.62	94.673	0.496	0.0	0.0	11.4	1.80	127.0	68.2	

DBFL Consulting Engineers		Page 3
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:37	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6.000	63.218	0.506	124.9	0.178	4.00	0.0	0.600	0	225	Pipe/Conduit	₩
6.001	62.882	0.758	83.0	0.172	0.00	0.0	0.600	0		Pipe/Conduit	•
7.000	9 926	0.095	104 5	0.032	4.00	0 0	0.600	0	225	Pipe/Conduit	₩
	51.857		90.0	0.162	0.00		0.600	0		Pipe/Conduit	o
											_
8.000	14.848	0.190	78.1	0.048	4.00	0.0	0.600	0	255	Pipe/Conduit	♂
9.000	20.094	0.229	87.7	0.010	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
0 001	14 040	0 005	156.0	0 000	0.00	0.0	0 600		005	/	_
8.001	14.848	0.095	156.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	€
7.002	47.048	0.803	58.6	0.058	0.00	0.0	0.600	0	225	Pipe/Conduit	₩
	40.001	0 101	015 5	0 005	0.00	0.0	0 600		0.55	-1 /2 1 1	_
	42.231			0.085	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	₩
0.003	11.022	0.203	210.0	0.100	0.00	0.0	0.000	O	373	Tipe/conduit	₩
10.000	46.964	0.671	70.0	0.103	4.00	0.0	0.600	0	225	Pipe/Conduit	₫*
6 004	26.248	0 164	160 0	0.063	0.00	0 0	0.600	0	375	Pipe/Conduit	
	18.464			0.003	0.00		0.600	0		Pipe/Conduit	₽
0.000		0.110		0.000	0.00	0.0	0.000	0	0 / 0	ripo, conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
6.000 6.001	53.19 50.93		98.825 98.244	0.178 0.350	0.0	0.0	5.1 9.7	1.17 1.73	46.5 122.1	30.8 57.9	
7.000 7.001	56.47 53.77		99.035 98.940	0.032 0.194	0.0	0.0	1.0 5.7	1.28 1.38	50.8 54.8	5.9 33.9	
8.000	56.36	4.15	98.755	0.048	0.0	0.0	1.5	1.60	81.9	8.8	
9.000	55.97	4.24	98.795	0.010	0.0	0.0	0.3	1.40	55.5	1.8	
8.001	54.93	4.48	98.565	0.058	0.0	0.0	1.7	1.04	41.5	10.4	
7.002	52.00	5.21	98.364	0.310	0.0	0.0	8.7	1.71	68.1	52.4	
6.002 6.003	49.00 47.20		97.411 97.217	0.745 0.853	0.0	0.0	19.8 21.8		135.2 137.5		
10.000	54.84	4.50	98.175	0.103	0.0	0.0	3.1	1.57	62.2	18.4	
6.004 6.005	46.33 45.74		97.008 96.844	1.019	0.0	0.0	25.6 25.6		157.9 157.6		
				©1982-2	020 Innov	yze					

DBFL Consulting Engineers							
Ormond House	Newcastle South						
Upper Ormond Quay	Co.Dublin						
Dublin 7, Ireland		Micro					
Date 19/05/2022 10:37	Designed by COL	Drainage					
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade					
Innovyze	Network 2020.1						

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6.006 6.007	115.373 9.821	2.747 0.196	42.0 50.0	0.000	0.00		0.600	0	375 375	Pipe/Conduit Pipe/Conduit	•
3.002 3.003	16.804 18.612		37.0 321.0	0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	•
2.004	12.489 15.306			0.000	0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	•
11.000 11.001	67.336 15.706			0.060 0.010	4.00		0.600	0		Pipe/Conduit Pipe/Conduit	1
2.006	58.428			0.000	0.00		0.600	0		Pipe/Conduit	•
1.005 1.006 1.007	19.051	0.036 0.048 0.027	400.9	0.000 0.000 0.000	0.00	0.0	0.600 0.600 0.600	0	300 600 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
6.006	43.99	7.88	96.729	1.019	0.0	0.0	25.6	2.80	309.6	153.4
6.007	43.83	7.94	93.982	1.019	0.0	0.0	25.6	2.57	283.6	153.4
3.002	42.07	8.71	93.779	1.776	0.0	0.0	40.5	2.99	329.9	242.8
3.003	41.54	8.96	93.175	1.776	0.0	0.0	40.5	1.24	269.5	242.8
2.004	41.07	9.19	92.980	1.958	0.0	0.0	43.6	0.92	36.6«	261.3
2.005	40.51	9.46	92.918	1.958	0.0	0.0	43.6	0.92	36.7«	261.3
11.000	52.65	5.04	93.525	0.060	0.0	0.0	1.7	1.08	42.8	10.3
11.001	51.73	5.29	93.067	0.070	0.0	0.0	2.0	1.08	42.8	11.8
2.006	38.65	10.46	92.841	2.028	0.0	0.0	43.6	0.98	38.9«	261.3
1.005	38.43	10.59	92.437	2.269	0.0	0.0	47.2	1.05	74.0«	283.4
1.006	37.98	10.85	92.101	2.269	0.0	0.0	47.2	1.21	342.1	283.4
1.007	37.89	10.90	92.386	2.269	0.0	0.0	47.2	1.10	43.8«	283.4

Free Flowing Outfall Details for SW_1

Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)
(m)

1.007 S0 94.000 92.359 0.000 0 0

DBFL Consulting Engineers		Page 5
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:37	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Online Controls for SW_1

Hydro-Brake® Optimum Manhole: S4, DS/PN: 2.005, Volume (m3): 2.8

Unit Reference MD-SHE-0130-9500-1830-9500 Design Head (m) 1.830 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 130 Invert Level (m) 92.918 Minimum Outlet Pipe Diameter (mm) 150 1500 Suggested Manhole Diameter (mm)

 Control Points
 Head (m)
 Flow (1/s)

 Design Point (Calculated)
 1.830
 9.5

 Flush-Flo™
 0.542
 9.5

 Kick-Flo®
 1.114
 7.5

 Mean Flow over Head Range
 8.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	ow (1/s)	Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	4.7	1.200	7.8	3.000	12.0	7.000	18.0
0.200	8.1	1.400	8.4	3.500	12.9	7.500	18.6
0.300	8.9	1.600	8.9	4.000	13.8	8.000	19.2
0.400	9.3	1.800	9.4	4.500	14.5	8.500	19.7
0.500	9.5	2.000	9.9	5.000	15.3	9.000	20.3
0.600	9.5	2.200	10.4	5.500	16.0	9.500	20.8
0.800	9.2	2.400	10.8	6.000	16.7		
1.000	8.4	2.600	11.2	6.500	17.3		

Hydro-Brake® Optimum Manhole: S01, DS/PN: 1.007, Volume (m³): 7.5

Unit Reference MD-SHE-0193-1900-1070-1900 Design Head (m) 1.070 Design Flow (1/s) 19.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 193 92.386 Invert Level (m) 225 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1500

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7, Ireland		Micro			
Date 19/05/2022 10:37	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade			
Innovyze	Network 2020.1	1			

Hydro-Brake® Optimum Manhole: S01, DS/PN: 1.007, Volume (m³): 7.5

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.070	19.0
	Flush-Flo™	0.349	19.0
	Kick-Flo®	0.756	16.1
Mean Flow ove	er Head Range	_	16.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) E	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	6.7	1.200	20.1	3.000	31.1	7.000	46.8
0.200	18.0	1.400	21.6	3.500	33.5	7.500	48.4
0.300	18.9	1.600	23.0	4.000	35.7	8.000	50.0
0.400	18.9	1.800	24.3	4.500	37.8	8.500	51.5
0.500	18.6	2.000	25.6	5.000	39.8	9.000	52.9
0.600	18.2	2.200	26.8	5.500	41.7	9.500	54.3
0.800	16.6	2.400	27.9	6.000	43.5		
1.000	18.4	2.600	29.0	6.500	45.2		

DBFL Consulting Engineers						
Ormond House	Newcastle South					
Upper Ormond Quay	Co.Dublin					
Dublin 7, Ireland		Micro				
Date 19/05/2022 10:37	Designed by COL	Drainage				
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade				
Innovyze	Network 2020.1					

Summary of Critical Results by Maximum Level (Rank 1) for SW 1

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 30
Climate Change (%)

													Water
	US/MH			Return	${\tt Climate}$	Firs	t (X)	First	(Y)	First	(Z)	Overflow	Level
PN	Name	s	torm	Period	Change	Surc	harge	Floo	d	Overf	Low	Act.	(m)
						00/4=	_						
1.000	S2-5		Winter	30		, -	Summer						93.993
1.001	S2-4	15	Winter	30	+0%	30/15	Summer						93.950
1.002	S2-3	15	Winter	30	+0%	30/15	Summer						93.885
1.003	S2-2	15	Winter	30	+0%	30/15	Summer						93.501
1.004	S2-1	15	Winter	30	+0%	30/15	Summer						92.875
2.000	S5-3	15	Winter	30	+0%								94.647
2.001	S5-2	15	Winter	30	+0%	30/15	Summer						94.588
2.002	S5-1	960	Winter	30	+0%	30/15	Summer						94.375
2.003	S5-1-1	960	Winter	30	+0%	30/15	Summer						94.374
3.000	S7-1	15	Winter	30	+0%								96.078
3.001	s7	15	Winter	30	+0%	30/15	Summer						95.782
4.000	S6-8-5	15	Winter	30	+0%	30/15	Summer						96.295
4.001	S6-8-4	15	Winter	30	+0%	30/15	Summer						96.175
4.002	S6-8-3	15	Winter	30	+0%	30/15	Summer						95.902
5.000	S6-11	15	Winter	30	+0%								97.105
5.001	S6-10	15	Winter	30	+0%								96.744
5.002	SX	15	Winter	30	+0%								96.659
5.003	SX	15	Winter	30	+0%								96.506
					©1982-	-2020	Innov	yze					

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7, Ireland		Mirro			
Date 19/05/2022 10:37	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade			
Innovyze	Network 2020.1	1			

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

	US/MH	Surcharged Depth			Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	S2-5	0.399	0.000	0.64			21.9	SURCHARGED	
1.001	S2-4	0.522	0.000	1.18			36.3	SURCHARGED	
1.002	S2-3	0.509	0.000	1.22			43.3	SURCHARGED	
1.003	S2-2	0.438	0.000	1.31			46.6	SURCHARGED	
1.004	S2-1	0.158	0.000	1.54			46.5	SURCHARGED	
2.000	S5-3	-0.153	0.000	0.23			18.6	OK	
2.001	S5-2	0.499	0.000	1.42			50.3	SURCHARGED	
2.002	S5-1	0.642	0.000	0.16			5.2	SURCHARGED	
2.003	S5-1-1	0.710	0.000	0.16			5.1	SURCHARGED	
3.000	S7-1	-0.017	0.000	0.82			43.6	OK	
3.001	s7	0.275	0.000	1.05			73.5	SURCHARGED	
4.000	S6-8-5	0.185	0.000	1.28			41.9	SURCHARGED	
4.001	S6-8-4	0.153	0.000	1.07			37.6	SURCHARGED	
4.002	S6-8-3	0.147	0.000	1.14			34.6	SURCHARGED	
5.000	S6-11	-0.095	0.000	0.61			26.3	OK	
5.001	S6-10	-0.055	0.000	0.92			26.1	OK	
5.002	SX	-0.067	0.000	0.82			25.5	OK	
5.003	SX	-0.110	0.000	0.52			21.9	OK	

DBFL Consulting Engineers						
Ormond House	Newcastle South					
Upper Ormond Quay	Co.Dublin					
Dublin 7, Ireland		Micro				
Date 19/05/2022 10:37	Designed by COL	Drainage				
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade				
Innovyze	Network 2020.1					

Summary of Critical Results by Maximum Level (Rank 1) for SW 1

	US/MH		Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow
PN	Name	Stor	n Period	Change	Surc	harge	Flood	Overflow	Act.
4.003	S6-8-2	15 Win	ter 30	+0%	30/15	Summer			
4.004	S6-12	120 Win	ter 30	+0%					
4.005	S6-13	120 Win	ter 30	+0%					
4.006	S6-14	15 Win	ter 30	+0%					
4.007	S6-6	15 Win	ter 30	+0%					
4.008	S6-5	15 Win	ter 30	+0%					
4.009	S6-4	15 Win	ter 30	+0%					
4.010	s6-3	15 Win	ter 30	+0%					
4.011	S6-2	15 Win	ter 30	+0%					
4.012	S6-1	15 Win	ter 30	+0%					
6.000	S13	15 Win	ter 30	+0%	30/15	Summer			
6.001	S12	15 Win	ter 30	+0%	30/15	Summer			
7.000	S11-3	15 Win	ter 30	+0%	30/15	Summer			
7.001	S11-2	15 Win	ter 30	+0%	30/15	Summer			
8.000	S11-1-2	15 Win	ter 30	+0%	30/15	Summer			
	S11-1-1-2	15 Win	ter 30	+0%		Summer			
8.001		15 Win	ter 30	+0%		Summer			
7.002	S11-1	15 Win	ter 30	+0%		Summer			
6.002	S11					Summer			
6.003	S10			+0%		Summer			
10.000	S9-1			+0%					
6.004	S9					Summer			
6.005	S8			+0%		Summer			
6.006	S8-1			+0%	307 13	Daninel			
6.007	S6X			+0%	30/15	Summer			
3.002	S6			+0%		Summer			
3.003		960 Win		+0%		Summer			
2.004		960 Win				Summer			
2.004		960 Win				Summer			
11.000	S3-2			+0%	30/13	Duniner			
11.000	S3-2			+0%					
2.006	S3-1 S3			+0%					
	\$3 \$2				20/15	Summer			
1.005		240 Win			20/12	Summer			
1.006		240 Win			20/100	T-7			
1.007	501	240 WIN	rei 30	+0%	30/180	winter			
		Weter	Zumaha	Elecated			uale noon	in Di	
	US/MH	Level	Surcharged Depth		Flow /	Overflo	Half Dra: w Time	In Pipe Flow	
PN	Name	(m)	(m)	(m ³)	Cap.	(1/s)	w Time (mins)	(1/s)	Status
4 002						•			CIIDCIIADCED
4.003	S6-8-2		0.129	0.000	1.78				SURCHARGED
4.004		95.488	-0.127	0.000	0.39			14.4	OK
4.005		95.346	-0.125	0.000	0.41			14.4	OK
4.006		95.293	-0.111	0.000	0.21			8.1	OK
4.007		95.294	-0.070	0.000	0.81			30.8	OK
4.008		95.107	-0.151	0.000	0.49			35.1	OK
1 nna	96-1	95 026	_0 138	0 000	0.55			3 a n	○K

-0.138 0.000 0.55

-0.124 0.000 0.64

©1982-2020 Innovyze

4.009

4.010

S6-4 95.026

S6-3 94.958

OK

OK

39.0

39.5

DBFL Consulting Engineers		Page 10
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:37	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow /	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status
4.011	96-2	94.902	-0.125	0.000	0.64			39.4	OK
4.012		94.871	-0.102	0.000	0.73			88.6	OK
6.000		99.380	0.330	0.000	1.14				SURCHARGED
6.001		98.844	0.300	0.000	0.77				SURCHARGED
7.000		99.544	0.284	0.000	0.18				SURCHARGED
7.001		99.536	0.371	0.000	0.97				SURCHARGED
8.000	S11-1-2		0.184	0.000	0.23				SURCHARGED
	S11-1-1-2		0.165	0.000	0.07				SURCHARGED
8.001	S11-1-1		0.390	0.000	0.64				SURCHARGED
7.002		99.161	0.572	0.000	0.97				SURCHARGED
6.002	S11	98.478	0.692	0.000	1.27			156.9	SURCHARGED
6.003	S10	98.168	0.576	0.000	1.37			172.9	SURCHARGED
10.000	S9-1	98.300	-0.100	0.000	0.59			35.4	OK
6.004	S9	97.772	0.389	0.000	1.53			209.6	SURCHARGED
6.005	S8	97.385	0.166	0.000	1.60			209.3	SURCHARGED
6.006	S8-1	96.961	-0.143	0.000	0.69			206.7	OK
6.007	S6X	94.797	0.440	0.000	1.24			214.7	SURCHARGED
3.002	S6	94.513	0.359	0.000	1.25			328.5	SURCHARGED
3.003	S5	94.375	0.675	0.000	0.25			51.7	SURCHARGED
2.004	S4-A	94.373	1.168	0.000	0.30			9.5	SURCHARGED
2.005	S4	94.359	1.216	0.000	0.29			9.5	SURCHARGED
11.000	S3-2	93.637	-0.113	0.000	0.46			19.2	OK
11.001	S3-1	93.193	-0.099	0.000	0.60			22.6	OK
2.006	S3	92.991	-0.075	0.000	0.75			27.9	OK
1.005	S2	92.764	0.027	0.000	1.26			69.5	SURCHARGED
1.006	S1	92.653	-0.048	0.000	0.07			18.4	OK
1.007	S01	92.616	0.005	0.000	0.61			18.3	SURCHARGED

	US/MH	Level
PN	Name	Exceeded
4 002	06.0.0	
4.003	S6-8-2	
4.004	S6-12	
4.005	S6-13	
4.006	S6-14	
4.007	S6-6	
4.008	S6-5	
4.009	S6-4	
4.010	S6-3	
4.011	S6-2	
4.012	S6-1	
6.000	S13	
6.001	S12	
7.000	S11-3	
7.001	S11-2	
8.000	S11-1-2	
9.000	S11-1-1-2	
©1982	-2020 In	novyze
		-

DBFL Consulting Engineers				
Ormond House	Newcastle South			
Upper Ormond Quay	Co.Dublin			
Dublin 7, Ireland		Mirro		
Date 19/05/2022 10:37	Designed by COL	Drainage		
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade		
Innovyze	Network 2020.1			

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

PN	US/MH Name	Level Exceeded
8.001	S11-1-1	
7.002	S11-1	
6.002	S11	
6.003	S10	
10.000	S9-1	
6.004	S9	
6.005	S8	
6.006	S8-1	
6.007	S6X	
3.002	s6	
3.003	S5	
2.004	S4-A	
2.005	S4	
11.000	S3-2	
11.001	S3-1	
2.006	s3	
1.005	S2	
1.006	S1	
1.007	S01	

DBFL Consulting Engineers		Page 1
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_2

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 2

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	60.802	0.380	160.0	0.168	4.00	0.0	0.600	0	225	Pipe/Conduit	₩
3.001	57.101	0.571	100.0	0.149	0.00	0.0	0.600	0	225	Pipe/Conduit	ě
3.002	10.511	0.105	100.1	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
4.000	25.021	0.626	40.0	0.055	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
3.003	5.592	0.042	133.1	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	<u> </u>
3.004	4.837	0.020	237.4	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ĕ
3.005	3.600	0.021	171.4	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ă
3.006	7.567	0.045	168.2	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
3.007	6.218	0.037	168.1	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base		Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
3.000	52.88	4.98	93.715	0.168	0.0	0.0	4.8	1.03	41.0	28.9	
3.001	50.23	5.71	93.335	0.317	0.0	0.0	8.6	1.31	52.0	51.8	
3.002	49.78	5.84	92.764	0.317	0.0	0.0	8.6	1.31	52.0	51.8	
4.000	56.14	4.20	93.375	0.055	0.0	0.0	1.7	2.08	82.5	10.0	
3.003	49.55	5.91	92.584	0.372	0.0	0.0	10.0	1.36	96.2	59.9	
3.004	49.29	5.99	92.542	0.372	0.0	0.0	10.0	1.02	71.8	59.9	
3.005	49.13	6.04	92.390	0.372	0.0	0.0	10.0	1.20	84.7	59.9	
3.006	48.73	6.17	92.369	0.372	0.0	0.0	10.0	1.01	40.0«	59.9	
3.007	48.41	6.27	92.324	0.372	0.0	0.0	10.0	1.01	40.0«	59.9	

DBFL Consulting Engineers		Page 2
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Free Flowing Outfall Details for SW_2

Out	fall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe	Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
								(m)		

3.007 SA0-4 94.000 92.287 0.000 0 0

Simulation Criteria for SW 2

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	20.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	2	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	17.700	Storm Duration (mins) 30
Ratio R	0.271	

DBFL Consulting Engineers		Page 3
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Online Controls for SW 2

Hydro-Brake® Optimum Manhole: SA0-2, DS/PN: 3.006, Volume (m³): 2.0

Unit Reference MD-SHE-0060-1900-1390-1900 1.390 Design Head (m) Design Flow (1/s) 1.9 $Flush-Flo^{\text{TM}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 60 Invert Level (m) 92.369 Minimum Outlet Pipe Diameter (mm) 7.5 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.390 1.9 Flush-Flo™ 0.268 1.5 Kick-Flo® 0.540 1.2 Mean Flow over Head Range 1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.8	3.000	2.7	7.000	4.0
0.200	1.5	1.400	1.9	3.500	2.9	7.500	4.1
0.300	1.5	1.600	2.0	4.000	3.1	8.000	4.3
0.400	1.5	1.800	2.1	4.500	3.3	8.500	4.4
0.500	1.3	2.000	2.2	5.000	3.4	9.000	4.5
0.600	1.3	2.200	2.3	5.500	3.6	9.500	4.6
0.800	1.5	2.400	2.4	6.000	3.7		
1.000	1.6	2.600	2.5	6.500	3.9		

DBFL Consulting Engineers		Page 4
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW 2

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%)

											Water
	US/MH			Return	${\tt Climate}$	Firs	t (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	St	torm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)
3.000	SA4	15	Winter	30	⊤ ∪∂	30/15	Summer				94.867
3.000	SA4		Winter	30		,	Summer				94.501
3.001	SAS	15	winter	30							94.501
3.002	SA2	1440	Winter	30	+0%	30/15	Summer				93.335
4.000	SA1-1	15	Winter	30	+0%						93.451
3.003	SA1	1440	Winter	30	+0%	30/15	Summer				93.333
3.004	SA2	1440	Winter	30	+0%	30/15	Summer				93.332
3.005	SA0-1	1440	Winter	30	+0%	30/15	Winter				93.331
3.006	SA0-2	1440	Winter	30	+0%	30/15	Summer				93.335
3.007	SA0-3	1440	Winter	30	+0%						92.357

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
3.000	SA4	0.927	0.000	0.97			38.3	SURCHARGED	
3.001	SA3	0.941	0.000	1.44			71.9	SURCHARGED	
3.002	SA2	0.346	0.000	0.16			7.0	SURCHARGED	
				@1 0 0 0	2020 T.				

DBFL Consulting Engineers		Page 5
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	,

Summary of Critical Results by Maximum Level (Rank 1) for SW 2

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
4.000	SA1-1	-0.149	0.000	0.25			18.9	OK	
3.003	SA1	0.449	0.000	0.13			8.3	SURCHARGED	
3.004	SA2	0.490	0.000	0.17			8.2	SURCHARGED	
3.005	SA0-1	0.641	0.000	0.09			4.7	SURCHARGED	
3.006	SA0-2	0.741	0.000	0.05			1.6	SURCHARGED	
3.007	SA0-3	-0.192	0.000	0.05			1.6	OK	

DBFL Consulting Engineers		Page 1
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_3

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 3

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	49.885 23.979		55.4 106.6	0.373	4.00			0.600	0		Pipe/Conduit Pipe/Conduit	•
2.001	14.536 62.402 39.757	0.956	65.3	0.000 0.000 0.000	4.00 0.00 0.00		0.0	0.600 0.600 0.600	0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0
1.003	30.865 11.458 52.811	0.450	25.5	0.000 0.000 0.000	0.00 0.00 0.00		0.0	0.600 0.600 0.600	0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	54.95	4.47	96.875	0.373	0.0	0.0	11.1	1.76	70.0	66.6
1.001	53.86	4.73	95.900	0.373	0.0	0.0	11.1	1.52	107.6	66.6
		4 0 4	0.7.07.5	0 000	0.0	0 0	0.0	1 01	40.1	0 0
2.000	55.97	4.24	97.075	0.000	0.0	0.0	0.0	1.01	40.1	0.0
2.001	53.27	4.88	96.988	0.000	0.0	0.0	0.0	1.62	64.5	0.0
2.002	51.02	5.48	96.032	0.000	0.0	0.0	0.0	1.10	43.7	0.0
1.002	49.70	5.87	95.675	0.373	0.0	0.0	11.1	1.34	94.8	66.6
1.003	49.50	5.93	95.450	0.373	0.0	0.0	11.1	3.13	221.1	66.6
1.004	46.92	6.77	95.000	0.373	0.0	0.0	11.1	1.05	74.0	66.6

DBFL Consulting Engineers		Page 2
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Diali lade
Innovyze	Network 2020.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	64.673	0.583	110.9	0.290	4.00	0.0	0.600	0	300	Pipe/Conduit	•
4.000 4.001 4.002	15.471 63.186 40.204	0.372		0.018 0.015 0.015	4.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0
3.001 3.002 3.003	11.089	0.039 0.037 0.016	299.7	0.000 0.000 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕
1.005 1.006		0.052 0.280	108.7 173.1	0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	⊕ ♂

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
3.000	53.91	4.72	94.962	0.290	0.0	0.0	8.5	1.49	105.5	50.8	
4.000 4.001 4.002	55.89 51.64 50.11	5.31	95.175 95.084 94.712	0.018 0.033 0.048	0.0 0.0 0.0	0.0	0.5 0.9 1.3	1.00 1.00 1.54	39.8 39.8 61.1	3.3 5.5 7.8	
3.001 3.002 3.003	49.60 48.94 48.70	6.10	94.083 94.044 94.007	0.338 0.338 0.338	0.0 0.0 0.0	0.0 0.0 0.0	9.1 9.1 9.1	1.01 0.90 0.96	71.7 63.8 67.6	54.5 54.5 54.5	
1.005 1.006	46.71 45.11		93.990 93.788	0.711 0.711	0.0	0.0	18.0 18.0		49.8« 151.8		

Free Flowing Outfall Details for SW_3

Outfall	Outfall	C. Level	I. Level	Min	D,L	W	
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)	
				(m)			
1.006	SB01	96.000	93.508	0.000	0	0	

DBFL Consulting Engineers	Page 3	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Diamage
Innovyze	Network 2020.1	

Simulation Criteria for SW 3

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 20.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Prof	ile Type	Summer
Return Period (years)		2		Cv	(Summer)	0.750
Region	Scotland and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)		17.700	Storm	Duration	n (mins)	30
Ratio R		0.271				

DBFL Consulting Engineers		Page 4
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Online Controls for SW_3

Hydro-Brake® Optimum Manhole: SB1, DS/PN: 1.006, Volume (m³): 2.1

Unit Reference MD-SHE-0082-3800-1723-3800 1.723 Design Head (m) Design Flow (1/s) 3.8 $Flush-Flo^{\text{TM}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 82 Invert Level (m) 93.788 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

 Control
 Points
 Head (m)
 Flow (1/s)

 Design Point (Calculated)
 1.723
 3.8

 Flush-Flo™
 0.361
 3.2

 Kick-Flo®
 0.735
 2.6

 Mean Flow over Head Range
 3.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.4	1.200	3.2	3.000	4.9	7.000	7.3
0.200	3.0	1.400	3.5	3.500	5.3	7.500	7.6
0.300	3.2	1.600	3.7	4.000	5.6	8.000	7.8
0.400	3.2	1.800	3.9	4.500	5.9	8.500	8.0
0.500	3.1	2.000	4.1	5.000	6.2	9.000	8.3
0.600	3.0	2.200	4.3	5.500	6.5	9.500	8.5
0.800	2.7	2.400	4.4	6.000	6.8		
1.000	3.0	2.600	4.6	6.500	7.1		

DBFL Consulting Engineers							
Ormond House	Newcastle South						
Upper Ormond Quay	Co.Dublin						
Dublin 7		Micro					
Date 13/06/2022	Designed by COL	Drainage					
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade					
Innovyze	Network 2020.1						

Summary of Critical Results by Maximum Level (Rank 1) for SW 3

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000
Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 30 Climate Change (%)

												Water
	US/MH			Return	${\tt Climate}$	Firs	t (X)	First	(Y)	First (Z)	Overflow	Level
PN	Name	s	torm	Period	Change	Surc	harge	Floo	od	Overflow	Act.	(m)
1.000	SB9	1 -	Winter	20	1.00	20/15	Q					00 054
				30			Summer					98.254
1.001	SB8	15	Winter	30	+0%	30/15	Summer					96.236
2.000	SB7-3	15	Summer	30	+0%							97.075
2.001	SB7-2	15	Summer	30	+0%							96.988
2.002	SB7-1	15	Summer	30	+0%							96.032
1.002	SB7	15	Winter	30	+0%	30/15	Summer					96.012
1.003	SB6	15	Winter	30	+0%							95.620
1.004	SB03	15	Winter	30	+0%	30/15	Summer					95.478
3.000	SB5	15	Winter	30	+0%							95.231
4.000	SB4-3	15	Winter	30	+0%							95.238
4.001	SB4-2	15	Winter	30	+0%							95.167
4.002	SB4-1	15	Winter	30	+0%							94.808
3.001	SB4	15	Winter	30	+0%	30/15	Summer					94.768
3.002	SB3	960	Winter	30	+0%	30/15	Summer					94.641
3.003	SB02	960	Winter	30	+0%	30/15	Summer					94.640
1.005	SB0	960	Winter	30	+0%	30/60	Summer					94.639
1.006	SB1	960	Winter	30	+0%	30/30	Summer					94.641
					@1 0 0 2	2020	Tnnor	77770				

DBFL Consulting Engineers							
Ormond House	Newcastle South						
Upper Ormond Quay	Co.Dublin						
Dublin 7		Micro					
Date 13/06/2022	Designed by COL	Drainage					
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade					
Innovyze	Network 2020.1						

Summary of Critical Results by Maximum Level (Rank 1) for SW 3

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	SB9	1.154	0.000	1.49			99.8	SURCHARGED	
1.001	SB8	0.036	0.000	1.02			97.5	SURCHARGED	
2.000	SB7-3	-0.225	0.000	0.00			0.0	OK	
2.001	SB7-2	-0.225	0.000	0.00			0.0	OK	
2.002	SB7-1	-0.225	0.000	0.00			0.0	OK	
1.002	SB7	0.037	0.000	1.10			95.1	SURCHARGED	
1.003	SB6	-0.130	0.000	0.56			94.4	OK	
1.004	SB03	0.178	0.000	1.35			94.1	SURCHARGED	
3.000	SB5	-0.031	0.000	0.94			94.9	OK	
4.000	SB4-3	-0.162	0.000	0.18			6.2	OK	
4.001	SB4-2	-0.142	0.000	0.28			10.6	OK	
4.002	SB4-1	-0.129	0.000	0.25			14.8	OK	
3.001	SB4	0.385	0.000	1.83			100.9	SURCHARGED	
3.002	SB3	0.297	0.000	0.19			9.8	SURCHARGED	
3.003	SB02	0.333	0.000	0.20			9.7	SURCHARGED	
1.005	SB0	0.424	0.000	0.10			3.3	SURCHARGED	
1.006	SB1	0.478	0.000	0.02			3.2	SURCHARGED	

DBFL Consulting Engineers	Page 1	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	D = = la =	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_1

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 1

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ıse	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	33.252	0.166	200.3	0.084	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
1.001	10.400	0.052	200.0	0.067	0.00		0.0	0.600	0		Pipe/Conduit	
1.002	62.621	0.313	200.1	0.045	0.00		0.0	0.600	0	225	Pipe/Conduit	
1.003	69.106	0.346	200.0	0.045	0.00		0.0	0.600	0	225	Pipe/Conduit	Ğ
1.004	9.223	0.046	200.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	Ğ
2.000	24.880	0.711	35.0	0.054	4.00		0.0	0.600	0	225	Pipe/Conduit	0
2.001	71.262	0.356	200.2	0.128	0.00		0.0	0.600	0	225	Pipe/Conduit	
2.002	12.727	0.069	185.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
2.003	8.756	0.052	167.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΒ	ase	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	54.41	4 . 60	93.369	0.084		0.0	0.0	2.5	0.92	36.6	14.9
1.001	53.64	4.79	93.203	0.151		0.0	0.0	4.4	0.92	36.6	26.3
1.002	49.52	5.92	93.151	0.196		0.0	0.0	5.3	0.92	36.6	31.5
1.003	45.80	7.17	92.838	0.241		0.0	0.0	6.0	0.92	36.6	35.9
1.004	45.35	7.34	92.492	0.241		0.0	0.0	6.0	0.92	36.6	35.9
2.000	56.21	4.19	94.575	0.054		0.0	0.0	1.6	2.22	88.2	9.9
2.001	51.04	5.48	93.864	0.182		0.0	0.0	5.0	0.92	36.6	30.2
2.002	50.27	5.70	93.508	0.182		0.0	0.0	5.0	0.96	38.1	30.2
2.003	49.79	5.84	93.439	0.182		0.0	0.0	5.0	1.01	40.1	30.2

DBFL Consulting Engineers		Page 2
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	51.375	0.588	87.4	0.132	4.00	0.0	0.600	0	225	Pipe/Conduit	₩
3.001	70.339	1.353	52.0	0.129	0.00	0.0	0.600	0		Pipe/Conduit	9
4.000	17.521	0.088	200.0	0.137	4.00	0.0	0.600	0	225	Pipe/Conduit	₩
4.001	53.542	0.268	200.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
4.002	15.093	0.067	225.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	•
5.000	53.155	0.401	132.6	0.080	4.00	0.0	0.600	0	225	Pipe/Conduit	₩
5.001	19.808	0.073	271.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
5.002	26.197	0.110	238.2	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
5.003	28.718	0.220	130.5	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
4.003	12.697	0.063	201.5	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ð
4.004	24.449	0.144	170.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
4.005	10.047	0.067	149.9	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
4.006	13.580	0.102	133.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ĕ
4.007	15.223	0.106	143.6	0.092	0.00	0.0	0.600	0	225	Pipe/Conduit	0
4.008	15.978	0.094	170.0	0.013	0.00	0.0	0.600	0	300	Pipe/Conduit	ĕ
4.009	13.911	0.082	169.6	0.013	0.00	0.0	0.600	0	300	Pipe/Conduit	₩
4.010	9.170	0.055	166.7	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	<u>-</u>
4.011	9.262	0.054	171.5	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	<u>-</u>
4.012	62.815	0.819	76.7	0.161	0.00	0.0	0.600	0	300	Pipe/Conduit	₩

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
3.000	54.37	4.61	95.870	0.132	0.0	0.0	3.9	1.40	55.6	23.3	
3.001	51.84	5.26	95.282	0.261	0.0	0.0	7.3	1.82	72.3	44.0	
4.000	55.63	4.32	95.885	0.137	0.0	0.0	4.1	0.92	36.6	24.8	
4.001	51.73	5.29	95.797	0.137	0.0	0.0	4.1	0.92	36.6	24.8	
4.002	50.70	5.58	95.530	0.137	0.0	0.0	4.1	0.87	34.5	24.8	
5.000	53.67	4.78	96.975	0.080	0.0	0.0	2.3	1.13	45.1	14.0	
5.001	52.05	5.20	96.574	0.080	0.0	0.0	2.3	0.79	31.4	14.0	
5.002	50.21	5.72	96.501	0.080	0.0	0.0	2.3	0.84	33.5	14.0	
5.003	48.83	6.14	96.391	0.080	0.0	0.0	2.3	1.14	45.4	14.0	
4.003	48.11	6.37	95.463	0.217	0.0	0.0	5.7	0.92	36.5	33.9	
4.004	46.91	6.77	95.390	0.217	0.0	0.0	5.7	1.00	39.8	33.9	
4.005	46.46	6.93	95.246	0.217	0.0	0.0	5.7	1.07	42.4	33.9	
4.006	45.91	7.13	95.179	0.217	0.0	0.0	5.7	1.13	45.0	33.9	
4.007	45.29	7.36	95.139	0.309	0.0	0.0	7.6	1.09	43.3«	45.5	
4.008	44.72	7.59	94.958	0.322	0.0	0.0	7.8	1.20	85.0	46.8	
4.009	44.24	7.78	94.864	0.335	0.0	0.0	8.0	1.20	85.1	48.2	
4.010	43.93	7.90	94.782	0.335	0.0	0.0	8.0	1.21	85.9	48.2	
4.011	43.62	8.03	94.727	0.335	0.0	0.0	8.0	1.20	84.6	48.2	
4.012	42.28	8.62	94.673	0.496	0.0	0.0	11.4	1.80	127.0	68.2	
				©1982-2	2020 Inna						_
				©190Z-2	2020 Innov	уие					

DBFL Consulting Engineers		Page 3
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6.000	63.218	0.506	124.9	0.178	4.00	0.0	0.600	0	225	Pipe/Conduit	€
6.001	62.882	0.758	83.0	0.172	0.00	0.0	0.600	0		Pipe/Conduit	•
											_
7.000		0.095		0.032	4.00		0.600	0		Pipe/Conduit	₩.
7.001	51.857	0.576	90.0	0.162	0.00	0.0	0.600	0	225	Pipe/Conduit	₩.
8.000	14.848	0.190	78.1	0.048	4.00	0.0	0.600	0	255	Pipe/Conduit	6
										-	•
9.000	20.094	0.229	87.7	0.010	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
8.001	14.848	0.095	156.3	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	₩.
7 002	47.048	0 803	58.6	0.058	0.00	0 0	0.600	0	225	Pipe/Conduit	€
7.002	17.010	0.005	30.0	0.000	0.00	0.0	0.000	O	225	Tipe/conduit	U.
6.002	42.231	0.194	217.7	0.085	0.00	0.0	0.600	0	375	Pipe/Conduit	₩
6.003	44.022	0.209	210.6	0.108	0.00	0.0	0.600	0	375	Pipe/Conduit	ĕ
10.000	46.964	0.671	70.0	0.103	4.00	0.0	0.600	0	225	Pipe/Conduit	₫*
6 004	26.248	0 164	160 0	0.063	0.00	0 0	0.600	0	375	Pipe/Conduit	
	18.464			0.000	0.00		0.600	0		Pipe/Conduit	ą,
0.003	10.404	0.113	100.0	0.000	0.00	0.0	0.800	0	3/3	ripe/conduit	₩

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
6.000 6.001	53.19 50.93		98.825 98.244	0.178 0.350	0.0	0.0	5.1 9.7	1.17 1.73	46.5 122.1	30.8 57.9	
7.000 7.001	56.47 53.77		99.035 98.940	0.032 0.194	0.0	0.0	1.0 5.7	1.28 1.38	50.8 54.8	5.9 33.9	
8.000	56.36	4.15	98.755	0.048	0.0	0.0	1.5	1.60	81.9	8.8	
9.000	55.97	4.24	98.795	0.010	0.0	0.0	0.3	1.40	55.5	1.8	
8.001	54.93	4.48	98.565	0.058	0.0	0.0	1.7	1.04	41.5	10.4	
7.002	52.00	5.21	98.364	0.310	0.0	0.0	8.7	1.71	68.1	52.4	
6.002 6.003	49.00 47.20		97.411 97.217	0.745 0.853	0.0	0.0	19.8 21.8		135.2 137.5		
10.000	54.84	4.50	98.175	0.103	0.0	0.0	3.1	1.57	62.2	18.4	
6.004 6.005	46.33 45.74		97.008 96.844	1.019	0.0	0.0	25.6 25.6		157.9 157.6		
				©1982-2	020 Innov	yze					

DBFL Consulting Engineers		Page 4
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Drairiage
Innovyze	Network 2020.1	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6.006 6.007	115.373 9.821	2.747 0.196	42.0 50.0	0.000	0.00		0.600	0	375 375	Pipe/Conduit Pipe/Conduit	•
3.002 3.003	16.804 18.612		37.0 321.0	0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	•
2.004	12.489 15.306			0.000	0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	•
11.000 11.001	67.336 15.706			0.060 0.010	4.00		0.600	0		Pipe/Conduit Pipe/Conduit	1
2.006	58.428			0.000	0.00		0.600	0		Pipe/Conduit	•
1.005 1.006 1.007	19.051	0.036 0.048 0.027	400.9	0.000 0.000 0.000	0.00	0.0	0.600 0.600 0.600	0	300 600 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
6.006	43.99	7.88	96.729	1.019	0.0	0.0	25.6	2.80	309.6	153.4
6.007	43.83	7.94	93.982	1.019	0.0	0.0	25.6	2.57	283.6	153.4
3.002	42.07	8.71	93.779	1.776	0.0	0.0	40.5	2.99	329.9	242.8
3.003	41.54	8.96	93.175	1.776	0.0	0.0	40.5	1.24	269.5	242.8
2.004	41.07	9.19	92.980	1.958	0.0	0.0	43.6	0.92	36.6«	261.3
2.005	40.51	9.46	92.918	1.958	0.0	0.0	43.6	0.92	36.7«	261.3
11.000	52.65	5.04	93.525	0.060	0.0	0.0	1.7	1.08	42.8	10.3
11.001	51.73	5.29	93.067	0.070	0.0	0.0	2.0	1.08	42.8	11.8
2.006	38.65	10.46	92.841	2.028	0.0	0.0	43.6	0.98	38.9«	261.3
1.005	38.43	10.59	92.437	2.269	0.0	0.0	47.2	1.05	74.0«	283.4
1.006	37.98	10.85	92.101	2.269	0.0	0.0	47.2	1.21	342.1	283.4
1.007	37.89	10.90	92.386	2.269	0.0	0.0	47.2	1.10	43.8«	283.4

Free Flowing Outfall Details for SW_1

Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)
(m)

1.007 S0 94.000 92.359 0.000 0 0

DBFL Consulting Engineers		Page 5
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Online Controls for SW_1

Hydro-Brake® Optimum Manhole: S4, DS/PN: 2.005, Volume (m3): 2.8

Unit Reference MD-SHE-0130-9500-1830-9500 Design Head (m) 1.830 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 130 Invert Level (m) 92.918 Minimum Outlet Pipe Diameter (mm) 150 1500 Suggested Manhole Diameter (mm)

 Control Points
 Head (m)
 Flow (1/s)

 Design Point (Calculated)
 1.830
 9.5

 Flush-Flo™
 0.542
 9.5

 Kick-Flo®
 1.114
 7.5

 Mean Flow over Head Range
 8.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Fl	low (1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.7	1.200	7.8	3.000	12.0	7.000	18.0
0.200	8.1	1.400	8.4	3.500	12.9	7.500	18.6
0.300	8.9	1.600	8.9	4.000	13.8	8.000	19.2
0.400	9.3	1.800	9.4	4.500	14.5	8.500	19.7
0.500	9.5	2.000	9.9	5.000	15.3	9.000	20.3
0.600	9.5	2.200	10.4	5.500	16.0	9.500	20.8
0.800	9.2	2.400	10.8	6.000	16.7		
1.000	8.4	2.600	11.2	6.500	17.3		

Hydro-Brake® Optimum Manhole: S01, DS/PN: 1.007, Volume (m³): 7.5

Unit Reference MD-SHE-0193-1900-1070-1900 Design Head (m) 1.070 Design Flow (1/s) 19.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 193 92.386 Invert Level (m) 225 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1500

DBFL Consulting Engineers		Page 6
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Hydro-Brake® Optimum Manhole: S01, DS/PN: 1.007, Volume (m³): 7.5

Control Points	Head (m) Flow	(1/s)
Design Point (Calculated)	1.070	19.0
Flush-FloT	0.349	19.0
Kick-Flo@	0.756	16.1
Mean Flow over Head Range	-	16.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flo	ow (1/s)	Depth (m)	Flow (1/s)
0.100	6.7	1.200	20.1	3.000	31.1	7.000	46.8
0.200	18.0	1.400	21.6	3.500	33.5	7.500	48.4
0.300	18.9	1.600	23.0	4.000	35.7	8.000	50.0
0.400	18.9	1.800	24.3	4.500	37.8	8.500	51.5
0.500	18.6	2.000	25.6	5.000	39.8	9.000	52.9
0.600	18.2	2.200	26.8	5.500	41.7	9.500	54.3
0.800	16.6	2.400	27.9	6.000	43.5		
1.000	18.4	2.600	29.0	6.500	45.2		

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7, Ireland		Micro			
Date 19/05/2022 10:58	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade			
Innovyze	Network 2020.1	1			

Summary of Critical Results by Maximum Level (Rank 1) for SW 1

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080

Return Period(s) (years) 100
Climate Change (%)

										Surcharged		
	US/MH							US/CL	Level	Depth	Volume	Flow /
PN	Name			E	vent			(m)	(m)	(m)	(m³)	Cap.
1.000	S2-5	15	minute	100	year	Winter	I+0%	94.818	94.441	0.847	0.000	0.80
1.001	S2-4	15	minute	100	year	Winter	I+0%	94.301	94.302	0.874	1.065	1.33
1.002	s2-3	15	minute	100	year	Winter	I+0%	94.221	94.222	0.846	1.242	1.31
1.003	S2-2	15	minute	100	year	Winter	I+0%	94.430	93.803	0.740	0.000	1.53
1.004	S2-1	15	minute	100	year	Winter	I+0%	93.700	92.951	0.234	0.000	1.79
2.000	S5-3	15	minute	100	year	Winter	I+0%	96.000	95.075	0.275	0.000	0.25
2.001	S5-2	15	minute	100	year	Winter	I+0%	95.270	95.035	0.946	0.000	1.70
2.002	S5-1	960	minute	100	year	Winter	I+0%	94.924	94.945	1.212	21.387	0.34
2.003	S5-1-1	960	minute	100	year	Winter	I+0%	95.450	94.969	1.304	0.000	0.31
3.000	S7-1	15	minute	100	year	Winter	I+0%	97.922	96.821	0.726	0.000	0.87
3.001	s7	15	minute	100	year	Winter	I+0%	97.000	96.466	0.959	0.000	1.16
4.000	S6-8-5	15	minute	100	year	Winter	I+0%	96.960	96.631	0.521	0.000	1.50
4.001	S6-8-4	15	minute	100	year	Winter	I+0%	96.900	96.446	0.424	0.000	1.30
4.002	S6-8-3	15	minute	100	year	Winter	I+0%	97.000	96.050	0.295	0.000	1.45
5.000	S6-11	15	minute	100	year	Winter	I+0%	98.400	97.131	-0.069	0.000	0.79
5.001	S6-10	15	minute	100	year	Winter	I+0%	98.000	96.815	0.016	0.000	1.15
5.002	SX	15	minute	100	year	Winter	I+0%	97.701	96.719	-0.007	0.000	1.00
5.003	SX	15	minute	100	year	Winter	I+0%	97.362	96.517	-0.099	0.000	0.60
©1982-2020 Innovyze												

DBFL Consulting Engineers		Page 8
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

			Pipe	
	US/MH	Overflow	Flow	
PN	Name	(1/s)	(1/s)	Status
1.000	s2-5		27.6	SURCHARGED
1.001	S2-4		40.9	FLOOD
1.002	s2-3		46.5	FLOOD
1.003	S2-2		54.5	SURCHARGED
1.004	S2-1		53.8	SURCHARGED
2.000	S5-3		20.0	SURCHARGED
2.001	S5-2		60.5	FLOOD RISK
2.002	S5-1		11.2	FLOOD
2.003	S5-1-1		10.1	SURCHARGED
3.000	S7-1		46.3	SURCHARGED
3.001	s7		81.2	SURCHARGED
4.000	S6-8-5		49.0	SURCHARGED
4.001	S6-8-4		45.9	SURCHARGED
4.002	S6-8-3		44.1	SURCHARGED
5.000	S6-11		34.1	OK
5.001	S6-10		32.6	SURCHARGED
5.002	SX		31.0	OK
5.003	SX		25.4	OK
	1.000 1.001 1.002 1.003 1.004 2.000 2.001 2.002 2.003 3.000 4.000 4.001 4.002 5.000 5.001	PN Name 1.000 \$2-5 1.001 \$2-4 1.002 \$2-3 1.003 \$2-2 1.004 \$2-1 2.000 \$5-3 2.001 \$5-2 2.002 \$5-1 3.000 \$7-1 3.001 \$7 4.000 \$6-8-5 4.001 \$6-8-4 4.002 \$6-8-3 5.000 \$6-11 5.001 \$6-10 5.002 \$X	PN Name (1/s) 1.000 S2-5 1.001 S2-4 1.002 S2-3 1.003 S2-2 1.004 S2-1 2.000 S5-3 2.001 S5-2 2.002 S5-1 2.003 S5-1-1 3.000 S7-1 3.001 S7 4.000 S6-8-5 4.001 S6-8-4 4.002 S6-8-3 5.000 S6-11 5.001 S6-10 5.002 SX	VS/MH Overflow (1/s) Flow (1/s) 1.000 S2-5 27.6 1.001 S2-4 40.9 1.002 S2-3 46.5 1.003 S2-2 54.5 1.004 S2-1 53.8 2.000 S5-3 20.0 2.001 S5-2 60.5 2.002 S5-1 10.1 3.000 S7-1 46.3 3.001 S7 81.2 4.000 S6-8-5 49.0 4.001 S6-8-4 45.9 4.002 S6-8-3 44.1 5.001 S6-10 32.6 5.002 SX 31.0

DBFL Consulting Engineers		Page 9
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Drairiage
Innovyze	Network 2020.1	·

$\underline{\textbf{Summary of Critical Results by Maximum Level (Rank 1) for SW_1}}$

PN	US/MH Name			E	vent			US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
4.003	S6-8-2	15	minute	100	vear	Winter	I+0%	97.000	95.906	0.218	0.000
4.004	S6-12		minute		-			96.961	95.511	-0.104	0.000
4.005	S6-13	60	minute	100	year	Winter	I+0%	96.775	95.370	-0.101	0.000
4.006	S6-14	30	minute	100	year	Winter	I+0%	96.550	95.351	-0.054	0.000
4.007	S6-6	15	minute	100	year	Winter	I+0%	96.590	95.372	0.008	0.000
4.008	S6-5	15	minute	100	year	Winter	I+0%	96.480	95.308	0.050	0.000
4.009	S6-4	15	minute	100	year	Winter	I+0%	96.360	95.232	0.068	0.000
4.010	s6-3	15	minute	100	year	Winter	I+0%	95.976	95.138	0.056	0.000
4.011	S6-2	15	minute	100	year	Winter	I+0%	95.932	95.056	0.029	0.000
4.012	S6-1	960	minute	100	year	Winter	I+0%	96.270	94.988	0.015	0.000
6.000	S13	15	minute	100	year	Winter	I+0%	100.250	100.180	1.130	0.000
6.001	S12	15	minute	100	year	Winter	I+0%	99.750	99.560	1.016	0.000
7.000	S11-3	15	minute	100	year	Winter	I+0%	100.460	100.301	1.041	0.000
7.001	S11-2	15	minute	100	year	Winter	I+0%	100.365	100.290	1.125	0.000
8.000	S11-1-2	15	minute	100	year	Winter	I+0%	100.180	99.861	0.851	0.000
9.000	S11-1-1-2	15	minute	100	year	Winter	I+0%	100.220	99.850	0.830	0.000
8.001	S11-1-1	15	minute	100	year	Winter	I+0%	101.299	99.840	1.050	0.000
7.002	S11-1	15	minute	100	year	Winter	I+0%	99.800	99.801	1.212	0.567
6.002	S11	15	minute	100	year	Winter	I+0%	99.000	99.000	1.214	0.339
6.003	S10	15	minute	100	year	Winter	I+0%	98.800	98.610	1.018	0.000
10.000	S9-1	15	minute	100	year	Winter	I+0%	99.620	98.324	-0.076	0.000
6.004	S9	15	minute	100	year	Winter	I+0%	99.020	98.048	0.665	0.000
6.005	S8	15	minute	100	year	Winter	I+0%	98.470	97.506	0.287	0.000
6.006	S8-1	15	minute	100	year	Winter	I+0%	97.803	97.007	-0.097	0.000
6.007	S6X	15	minute	100	year	Winter	I+0%	95.793	95.166	0.809	0.000
3.002	S6		minute		-			95.800	94.986	0.832	0.000
3.003	S5		minute		-			95.562	94.989	1.289	0.000
2.004			minute					95.347	94.988	1.783	0.000
2.005	S4		minute					95.000	94.987	1.844	0.000
11.000	S3-2		minute		_			94.950	93.657	-0.093	0.000
11.001	S3-1		minute		-			95.220	93.218	-0.074	0.000
2.006	S3		minute					95.156	93.034	-0.032	0.000
1.005	S2		minute		-			93.900	92.803	0.066	0.000
1.006			minute		-			93.837	92.706	0.005	0.000
1.007	S01	240	minute	100	year	Winter	I+0%	93.800	92.714	0.103	0.000

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status
4.003	S6-8-2	2.15		67.4	SURCHARGED
4.004	S6-12	0.56		20.7	OK
4.005	S6-13	0.59		20.7	OK
4.006	S6-14	0.47		18.3	OK
4.007	S6-6	1.00		38.1	SURCHARGED
4.008	S6-5	0.61		43.9	SURCHARGED
4.009	S6-4	0.69		49.0	SURCHARGED
4.010	S6-3	0.75		45.8	SURCHARGED

DBFL Consulting Engineers		Page 10
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7, Ireland		Micro
Date 19/05/2022 10:58	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW_1

				Pipe	
	US/MH	Flow /	Overflow	Flow	
PN	Name	Cap.	(1/s)	(1/s)	Status
4.011	S6-2	0.69		42.4	SURCHARGED
4.012	S6-1	0.14		17.4	SURCHARGED
6.000	S13	1.24		55.5	FLOOD RISK
6.001	S12	0.85		98.7	FLOOD RISK
7.000	S11-3	0.22		9.2	FLOOD RISK
7.001	S11-2	1.06		56.0	FLOOD RISK
8.000	S11-1-2	0.25		17.6	SURCHARGED
9.000	S11-1-1-2	0.11		5.7	SURCHARGED
8.001	S11-1-1	0.62		22.6	SURCHARGED
7.002	S11-1	1.08		70.1	FLOOD
6.002	S11	1.46		180.4	FLOOD
6.003	S10	1.61		203.0	FLOOD RISK
10.000	S9-1	0.77		45.6	OK
6.004	S9	1.80		247.5	SURCHARGED
6.005	S8	1.90		248.5	SURCHARGED
6.006	S8-1	0.82		244.6	OK
6.007	S6X	1.42		246.6	SURCHARGED
3.002	S6	0.24		63.9	SURCHARGED
3.003	S5	0.31		63.5	SURCHARGED
2.004	S4-A	0.36		11.4	SURCHARGED
2.005	S4	0.31		9.9	FLOOD RISK
11.000	S3-2	0.60		25.0	OK
11.001	S3-1	0.78		29.3	OK
2.006	S3	0.88		32.9	OK
1.005	S2	1.54		85.1	SURCHARGED
1.006	S1	0.09		22.2	SURCHARGED
1.007	S01	0.63		18.9	SURCHARGED

DBFL Consulting Engineers		Page 1
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Diali lade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_2

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 2

« - Indicates pipe capacity < flow</pre>

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
3.000	60.802	U 38U	160 0	0.168	4.00		0 0	0.600	0	225	Pipe/Conduit	
											± '	₫
3.001				0.149	0.00			0.600	0		Pipe/Conduit	0
3.002	10.511	0.105	100.1	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	0
4.000	25.021	0.626	40.0	0.055	4.00		0.0	0.600	0	225	Pipe/Conduit	0
3.003	5.592	0.042	133.1	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	a
3.004	4.837	0.020	237.4	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	Ť
3.005	3.600	0.021	171.4	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	•
3.006	7.567	0.045	168.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
3.007	6.218	0.037	168.1	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ĕ
												_

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
2 000	F0 00	4 00	00 715	0 100	0.0	0 0	4.0	1 00	41 0	20.0	
3.000	52.88	4.98	93.715	0.168	0.0	0.0	4.8	1.03	41.0	28.9	
3.001	50.23	5.71	93.335	0.317	0.0	0.0	8.6	1.31	52.0	51.8	
3.002	49.78	5.84	92.764	0.317	0.0	0.0	8.6	1.31	52.0	51.8	
4.000	56.14	4.20	93.375	0.055	0.0	0.0	1.7	2.08	82.5	10.0	
3.003	49.55	5.91	92.584	0.372	0.0	0.0	10.0	1.36	96.2	59.9	
3.004	49.29	5.99	92.542	0.372	0.0	0.0	10.0	1.02	71.8	59.9	
3.005	49.13	6.04	92.390	0.372	0.0	0.0	10.0	1.20	84.7	59.9	
3.006	48.73	6.17	92.369	0.372	0.0	0.0	10.0	1.01	40.0«	59.9	
3.007	48.41	6.27	92.324	0.372	0.0	0.0	10.0	1.01	40.0«	59.9	

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7		Micro			
Date 13/06/2022	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Diamage			
Innovyze	Network 2020.1				

Free Flowing Outfall Details for SW 2

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)
							(m)		

3.007 SA0-4 94.000 92.287 0.000 0 0

Simulation Criteria for SW 2

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow	20.000
Areal Reduction Factor	1.000	MADD Factor * 10m3/ha Storage	2.000
Hot Start (mins)	0	Inlet Coeffiecient	0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day)	0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins)	60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins)	1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type Summer
Return Period (years)	2	Cv (Summer) 0.750
Region	Scotland and Ireland	Cv (Winter) 0.840
M5-60 (mm)	17.700	Storm Duration (mins) 30
Ratio R	0.271	

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7		Micro			
Date 13/06/2022	Deed and all land COT	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Diali lade			
Innovyze	Network 2020.1				

Online Controls for SW 2

Hydro-Brake® Optimum Manhole: SA0-2, DS/PN: 3.006, Volume (m³): 2.0

Unit Reference MD-SHE-0060-1900-1390-1900 1.390 Design Head (m) Design Flow (1/s) 1.9 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 60 Invert Level (m) 92.369 Minimum Outlet Pipe Diameter (mm) 7.5 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.390 1.9 Flush-Flo™ 0.268 1.5 Kick-Flo® 0.540 1.2 Mean Flow over Head Range 1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	w (1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.8	3.000	2.7	7.000	4.0
0.200	1.5	1.400	1.9	3.500	2.9	7.500	4.1
0.300	1.5	1.600	2.0	4.000	3.1	8.000	4.3
0.400	1.5	1.800	2.1	4.500	3.3	8.500	4.4
0.500	1.3	2.000	2.2	5.000	3.4	9.000	4.5
0.600	1.3	2.200	2.3	5.500	3.6	9.500	4.6
0.800	1.5	2.400	2.4	6.000	3.7		
1.000	1.6	2.600	2.5	6.500	3.9		

DBFL Consulting Engineers		Page 4
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Summary of Critical Results by Maximum Level (Rank 1) for SW 2

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000
Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 100
Climate Change (%)

PN	US/MH Name	St	torm		Climate Change		(X) arge		t (Y) ood	First Overf	 Overflow Act.
3.000	SA4	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
3.001	SA3	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
3.002	SA2	1440	Winter	100	+0%	100/15	Summer				
4.000	SA1-1	1440	Winter	100	+0%	100/600	Winter				
3.003	SA1	1440	Winter	100	+0%	100/15	Summer				
3.004	SA2	1440	Winter	100	+0%	100/15	Summer				
3.005	SA0-1	1440	Winter	100	+0%	100/15	Summer				
3.006	SA0-2	2160	Winter	100	+0%	100/15	Summer				
3.007	SA0-3	1440	Winter	100	+0%						
		Wa	ater Su	rcharge	d Floode	d		Half	Drain	Pipe	

Volume Flow / Overflow US/MH Level Depth Time Flow PNName (m) (m) (m³) Cap. (1/s)(mins) (1/s)Status 1.363 SA4 95.303 1.25 49.5 3.000 3.149 FLOOD 3.001 SA3 95.001 1.441 0.635 82.4 FLOOD 1.65 SA2 93.796 8.5 SURCHARGED 3.002 0.807 0.000 0.19 ©1982-2020 Innovyze

DBFL Consulting Engineers						
Ormond House	Newcastle South					
Upper Ormond Quay	Co.Dublin					
Dublin 7		Micro				
Date 13/06/2022	Designed by COL	Drainage				
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade				
Innovyze	Network 2020.1					

Summary of Critical Results by Maximum Level (Rank 1) for SW 2

PN	US/MH Name	Water Level (m)	Surcharged Depth (m)		Flow /	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status
4.000	SA1-1	93.795	0.195	0.000	0.02			1.5	SURCHARGED
3.003	SA1	93.794	0.910	0.000	0.16			9.8	SURCHARGED
3.004	SA2	93.793	0.951	0.000	0.21			9.8	SURCHARGED
3.005	SA0-1	93.792	1.102	0.000	0.09			4.4	FLOOD RISK
3.006	SA0-2	93.785	1.191	0.000	0.06			1.9	FLOOD RISK
3.007	SA0-3	92.361	-0.188	0.000	0.06			1.9	OK

	US/MH	Level
PN	Name	Exceeded
3.000	SA4	4
3.001	SA3	2
3.002	SA2	
4.000	SA1-1	
3.003	SA1	
3.004	SA2	
3.005	SA0-1	
3.006	SA0-2	
3.007	SA0-3	

DBFL Consulting Engineers	Page 1	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for SW_3

Pipe Sizes standard Manhole Sizes standard

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 17.700 Add Flow / Climate Change (%) 20

Ratio R 0.271 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 100 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for SW 3

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1		k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	49.885 23.979		55.4 106.6	0.373	4.00			0.600	0		Pipe/Conduit Pipe/Conduit	•
2.001	14.536 62.402 39.757	0.956	65.3	0.000 0.000 0.000	4.00 0.00 0.00		0.0	0.600 0.600 0.600	0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0
1.003	30.865 11.458 52.811	0.450	25.5	0.000 0.000 0.000	0.00 0.00 0.00		0.0	0.600 0.600 0.600	0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	54.95	4.47	96.875	0.373	0.0	0.0	11.1	1.76	70.0	66.6
1.001	53.86	4.73	95.900	0.373	0.0	0.0	11.1	1.52	107.6	66.6
		4 0 4	0.7.07.5	0 000	0.0	0 0	0.0		40.1	0 0
2.000	55.97	4.24	97.075	0.000	0.0	0.0	0.0	1.01	40.1	0.0
2.001	53.27	4.88	96.988	0.000	0.0	0.0	0.0	1.62	64.5	0.0
2.002	51.02	5.48	96.032	0.000	0.0	0.0	0.0	1.10	43.7	0.0
1.002	49.70	5.87	95.675	0.373	0.0	0.0	11.1	1.34	94.8	66.6
1.003	49.50	5.93	95.450	0.373	0.0	0.0	11.1	3.13	221.1	66.6
1.004	46.92	6.77	95.000	0.373	0.0	0.0	11.1	1.05	74.0	66.6

DBFL Consulting Engineers	Page 2	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Diali lade
Innovyze	Network 2020.1	

Network Design Table for SW 3

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	64.673	0.583	110.9	0.290	4.00	0.0	0.600	0	300	Pipe/Conduit	•
4.000 4.001 4.002	15.471 63.186 40.204	0.372		0.018 0.015 0.015	4.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0
3.001 3.002 3.003	11.089	0.039 0.037 0.016	299.7	0.000 0.000 0.000	0.00 0.00 0.00	0.0	0.600 0.600 0.600	0 0	300	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕
1.005 1.006		0.052 0.280	108.7 173.1	0.000	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	⊕ ♂

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
3.000	53.91	4.72	94.962	0.290	0.0	0.0	8.5	1.49	105.5	50.8	
4.000 4.001 4.002	55.89 51.64 50.11	5.31	95.175 95.084 94.712	0.018 0.033 0.048	0.0 0.0 0.0	0.0	0.5 0.9 1.3	1.00 1.00 1.54	39.8 39.8 61.1	3.3 5.5 7.8	
3.001 3.002 3.003	49.60 48.94 48.70	6.10	94.083 94.044 94.007	0.338 0.338 0.338	0.0 0.0 0.0	0.0 0.0 0.0	9.1 9.1 9.1	1.01 0.90 0.96	71.7 63.8 67.6	54.5 54.5 54.5	
1.005 1.006	46.71 45.11		93.990 93.788	0.711 0.711	0.0	0.0	18.0 18.0		49.8« 151.8		

Free Flowing Outfall Details for SW_3

Outfall	Outfall	C. Level	I. Level	Min	D,L	W	
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)	
				(m)			
1.006	SB01	96.000	93.508	0.000	0	0	

DBFL Consulting Engineers	Page 3	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Diamage
Innovyze	Network 2020.1	

Simulation Criteria for SW_3

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 20.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Prof	ile Type	Summer
Return Period (years)		2		Cv	(Summer)	0.750
Region	Scotland and	Ireland		Cv	(Winter)	0.840
M5-60 (mm)		17.700	Storm	Duration	n (mins)	30
Ratio R		0.271				

DBFL Consulting Engineers	Page 4	
Ormond House	Newcastle South	
Upper Ormond Quay	Co.Dublin	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Online Controls for SW 3

Hydro-Brake® Optimum Manhole: SB1, DS/PN: 1.006, Volume (m³): 2.1

Unit Reference MD-SHE-0082-3800-1723-3800 1.723 Design Head (m) Design Flow (1/s) 3.8 $Flush-Flo^{\text{TM}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 82 Invert Level (m) 93.788 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

 Control
 Points
 Head (m)
 Flow (1/s)

 Design Point (Calculated)
 1.723
 3.8

 Flush-Flo™
 0.361
 3.2

 Kick-Flo®
 0.735
 2.6

 Mean Flow over Head Range
 3.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.4	1.200	3.2	3.000	4.9	7.000	7.3
0.200	3.0	1.400	3.5	3.500	5.3	7.500	7.6
0.300	3.2	1.600	3.7	4.000	5.6	8.000	7.8
0.400	3.2	1.800	3.9	4.500	5.9	8.500	8.0
0.500	3.1	2.000	4.1	5.000	6.2	9.000	8.3
0.600	3.0	2.200	4.3	5.500	6.5	9.500	8.5
0.800	2.7	2.400	4.4	6.000	6.8		
1.000	3.0	2.600	4.6	6.500	7.1		

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7		Micro			
Date 13/06/2022	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade			
Innovyze	Network 2020.1				

Summary of Critical Results by Maximum Level (Rank 1) for SW 3

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 20.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.271
Region Scotland and Ireland Cv (Summer) 0.750
M5-60 (mm) 17.700 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

ON

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 100
Climate Change (%)

	US/MH			Return	${\tt Climate}$	First	t (X)	First	(Y)	First (Z)	Overflow
PN	Name	S	torm	Period	Change	Surch	narge	Flo	od	Overflow	Act.
1.000	SB9	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
1.001	SB8	15	Winter	100	+0%	100/15	Summer				
2.000	SB7-3	15	Summer	100	+0%						
2.001	SB7-2	15	Summer	100	+0%						
2.002	SB7-1	15	Winter	100	+0%						
1.002	SB7	15	Winter	100	+0%	100/15	Summer				
1.003	SB6	15	Winter	100	+0%	100/15	Winter				
1.004	SB03	15	Winter	100	+0%	100/15	Summer				
3.000	SB5	15	Winter	100	+0%	100/15	Summer				
4.000	SB4-3	15	Winter	100	+0%						
4.001	SB4-2	15	Winter	100	+0%						
4.002	SB4-1	960	Winter	100	+0%	100/15	Summer				
3.001	SB4	960	Winter	100	+0%	100/15	Summer				
3.002	SB3	960	Winter	100	+0%	100/15	Summer				
3.003	SB02	960	Winter	100	+0%	100/15	Summer				
1.005	SB0	960	Winter	100	+0%	100/30	Summer				
1.006	SB1	1440	Winter	100	+0%	100/15	Winter	100/720	Winter		

DBFL Consulting Engineers					
Ormond House	Newcastle South				
Upper Ormond Quay	Co.Dublin				
Dublin 7		Mirro			
Date 13/06/2022	Designed by COL	Drainage			
File WINDES MODEL COMBINED N	Checked by NCG	Dialilade			
Innovyze	Network 2020.1				

Summary of Critical Results by Maximum Level (Rank 1) for SW_3

		Water	Surcharged	${\tt Flooded}$			Half Drain	Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	Time	Flow	
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status
1.000	SB9	98.641	1.541	4.684	1.62			108.7	FLOOD
1.001		96.353	0.153	0.000	1.12				SURCHARGED
2.000		97.075	-0.225	0.000	0.00			0.0	OK
2.001	SB7-2	96.988	-0.225	0.000	0.00			0.0	OK
2.002	SB7-1	96.072	-0.185	0.000	0.01			0.4	OK
1.002	SB7	96.075	0.100	0.000	1.23			105.7	SURCHARGED
1.003	SB6	95.758	0.008	0.000	0.60			101.2	SURCHARGED
1.004	SB03	95.543	0.243	0.000	1.45			101.2	SURCHARGED
3.000	SB5	95.607	0.345	0.000	1.11			112.0	SURCHARGED
4.000	SB4-3	95.248	-0.152	0.000	0.23			8.0	OK
4.001	SB4-2	95.180	-0.129	0.000	0.36			13.8	OK
4.002	SB4-1	95.131	0.194	0.000	0.03			1.7	SURCHARGED
3.001	SB4	95.131	0.748	0.000	0.22			12.3	SURCHARGED
3.002	SB3	95.129	0.785	0.000	0.24			12.3	FLOOD RISK
3.003	SB02	95.128	0.821	0.000	0.26			12.3	FLOOD RISK
1.005	SB0	95.127	0.912	0.000	0.17			5.6	FLOOD RISK
1.006	SB1	95.124	0.961	13.360	0.02			3.4	FLOOD

PN	•	Level Exceeded
1.000	SB9	4
1.001	SB8	
2.000	SB7-3	
2.001	SB7-2	
2.002	SB7-1	
1.002	SB7	
1.003	SB6	
1.004	SB03	
3.000	SB5	
4.000	SB4-3	
4.001	SB4-2	
4.002	SB4-1	
3.001	SB4	
3.002	SB3	
3.003	SB02	
1.005	SB0	
1.006	SB1	4

Appendix C

ATTENUATION CALCULATIONS

DBFL Consulting Engineers				
Ormond House	Newcastle South,			
Upper Ormond Quay	Co.Dublin			
Dublin 7		Micro		
Date 13/06/2022	Designed by COL	Drainage		
File CATCHMENT 2A 1 IN 30 YE	Checked by NCG	Dialilade		
Innovyze	Source Control 2020.1			

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	93.364	0.264	7.9	225.2	O K
30	min	Summer	93.459	0.359	8.1	306.7	O K
60	min	Summer	93.559	0.459	8.2	392.3	O K
120	min	Summer	93.666	0.566	8.2	483.0	O K
180	min	Summer	93.727	0.627	8.2	535.8	O K
240	min	Summer	93.770	0.670	8.2	571.8	O K
360	min	Summer	93.823	0.723	8.2	617.1	O K
480	min	Summer	93.853	0.753	8.2	642.8	O K
600	min	Summer	93.869	0.769	8.2	657.1	O K
720	min	Summer	93.878	0.778	8.2	664.4	O K
960	min	Summer	93.887	0.787	8.2	672.2	O K
1440	min	Summer	93.887	0.787	8.2	672.2	O K
2160	min	Summer	93.867	0.767	8.2	654.9	O K
2880	min	Summer	93.836	0.736	8.2	628.7	O K
4320	min	Summer	93.764	0.664	8.2	567.0	O K
5760	min	Summer	93.689	0.589	8.2	502.7	O K
7200	min	Summer	93.617	0.517	8.2	441.1	O K
8640	min	Summer	93.550	0.450	8.2	384.4	O K
10080	min	Summer	93.492	0.392	8.2	334.4	O K
15	min	Winter	93.396	0.296	8.0	253.1	O K
30	min	Winter	93.504	0.404	8.2	345.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	71.420	0.0	232.8	22
30	min	Summer	49.076	0.0	319.9	37
60	min	Summer	32.017	0.0	417.7	66
120	min	Summer	20.414	0.0	532.7	126
180	min	Summer	15.583	0.0	609.8	184
240	min	Summer	12.841	0.0	670.1	244
360	min	Summer	9.756	0.0	763.9	362
480	min	Summer	8.019	0.0	837.2	482
600	min	Summer	6.885	0.0	898.5	600
720	min	Summer	6.077	0.0	951.7	684
960	min	Summer	4.990	0.0	1042.1	802
1440	min	Summer	3.778	0.0	1182.1	1064
2160	min	Summer	2.858	0.0	1343.1	1472
2880	min	Summer	2.343	0.0	1467.9	1880
4320	min	Summer	1.769	0.0	1662.4	2688
5760	min	Summer	1.449	0.0	1815.3	3464
7200	min	Summer	1.241	0.0	1943.2	4248
8640	min	Summer	1.093	0.0	2054.5	5008
10080	min	Summer	0.982	0.0	2153.5	5656
15	min	Winter	71.420	0.0	260.7	22
30	min	Winter	49.076	0.0	358.4	37

DBFL Consulting Engineers					
Ormond House	Newcastle South,				
Upper Ormond Quay	Co.Dublin				
Dublin 7		Mirro			
Date 13/06/2022	Designed by COL	Drainage			
File CATCHMENT 2A 1 IN 30 YE	Checked by NCG	niairiade			
Innovyze	Source Control 2020.1				

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	93.618	0.518	8.2	442.4	O K
120	min	Winter	93.741	0.641	8.2	547.3	O K
180	min	Winter	93.814	0.714	8.2	609.8	O K
240	min	Winter	93.865	0.765	8.2	653.4	O K
360	min	Winter	93.933	0.833	8.2	711.2	O K
480	min	Winter	93.975	0.875	8.2	747.3	O K
600	min	Winter	94.003	0.903	8.2	770.8	O K
720	min	Winter	94.020	0.920	8.2	786.0	O K
960	min	Winter	94.037	0.937	8.2	800.0	O K
1440	min	Winter	94.027	0.927	8.2	791.7	O K
2160	min	Winter	93.990	0.890	8.2	760.1	O K
2880	min	Winter	93.934	0.834	8.2	711.8	O K
4320	min	Winter	93.804	0.704	8.2	601.2	O K
5760	min	Winter	93.677	0.577	8.2	492.5	O K
7200	min	Winter	93.563	0.463	8.2	395.4	O K
8640	min	Winter	93.467	0.367	8.1	313.7	O K
10080	min	Winter	93.390	0.290	8.0	248.0	O K

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Winter	32.017	0.0	467.6	66
		Winter	20.414	0.0	596.8	124
180	min	Winter	15.583	0.0	683.1	182
240	min	Winter	12.841	0.0	750.6	240
360	min	Winter	9.756	0.0	855.5	356
480	min	Winter	8.019	0.0	937.8	472
600	min	Winter	6.885	0.0	1006.3	584
720	min	Winter	6.077	0.0	1066.2	698
960	min	Winter	4.990	0.0	1167.1	916
1440	min	Winter	3.778	0.0	1231.7	1186
2160	min	Winter	2.858	0.0	1504.1	1624
2880	min	Winter	2.343	0.0	1644.1	2076
4320	min	Winter	1.769	0.0	1862.3	2940
5760	min	Winter	1.449	0.0	2032.7	3744
7200	min	Winter	1.241	0.0	2176.6	4472
8640	min	Winter	1.093	0.0	2301.6	5184
10080	min	Winter	0.982	0.0	2412.1	5856

DBFL Consulting Engineers			
Ormond House	Newcastle South,		
Upper Ormond Quay	Co.Dublin		
Dublin 7		Micro	
Date 13/06/2022	Designed by COL	Drainage	
File CATCHMENT 2A 1 IN 30 YE	Checked by NCG	nialilade	
Innovyze	Source Control 2020.1		

Storage is Online Cover Level (m) 95.200

Tank or Pond Structure

Invert Level (m) 93.100

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) Area	(m²)	Depth (m) A	Area (m²)
0.000	854.0	0.700	854.0	1.400	0.0	2.100	0.0
0.100	854.0	0.800	854.0	1.500	0.0	2.200	0.0
0.200	854.0	0.900	854.0	1.600	0.0	2.300	0.0
0.300	854.0	1.000	854.0	1.700	0.0	2.400	0.0
0.400	854.0	1.100	854.0	1.800	0.0	2.500	0.0
0.500	854.0	1.200	854.0	1.900	0.0		
0.600	854.0	1.300	0.0	2.000	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0122-8200-1750-8200 Design Head (m) 1.750 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 122 Invert Level (m) 93.034 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.750 8.2 Flush-Flo $^{\text{TM}}$ 0.514 8.2 Kick-Flo $^{\text{R}}$ 1.058 6.5 Mean Flow over Head Range - 7.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	4.3	1.200	6.9	3.000	10.6	7.000	15.8
0.200	7.1	1.400	7.4	3.500	11.4	7.500	16.4
0.300	7.8	1.600	7.9	4.000	12.1	8.000	16.9
0.400	8.1	1.800	8.3	4.500	12.8	8.500	17.4
0.500	8.2	2.000	8.7	5.000	13.5	9.000	17.8
0.600	8.1	2.200	9.1	5.500	14.1	9.500	18.3
0.800	7.8	2.400	9.5	6.000	14.7		
1.000	6.9	2.600	9.9	6.500	15.3		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 2A,	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2A 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	93.495	0.415	8.2	294.9	O K
30	min	Summer	93.650	0.570	8.2	404.6	O K
60	min	Summer	93.808	0.728	8.2	516.6	O K
120	min	Summer	93.976	0.896	8.2	636.5	O K
180	min	Summer	94.079	0.999	8.2	709.0	O K
240	min	Summer	94.150	1.070	8.2	759.8	O K
360	min	Summer	94.375	1.295	8.2	824.7	O K
480	min	Summer	94.430	1.350	8.2	862.7	O K
600	min	Summer	94.464	1.384	8.2	886.3	O K
720	min	Summer	94.485	1.405	8.2	900.5	O K
960	min	Summer	94.500	1.420	8.2	911.1	O K
1440	min	Summer	94.502	1.422	8.2	912.4	O K
2160	min	Summer	94.479	1.399	8.2	896.8	O K
2880	min	Summer	94.445	1.365	8.2	873.0	O K
4320	min	Summer	94.359	1.279	8.2	816.0	O K
5760	min	Summer	94.136	1.056	8.2	749.8	O K
7200	min	Summer	94.012	0.932	8.2	662.0	O K
8640	min	Summer	93.896	0.816	8.2	579.2	O K
10080	min	Summer	93.793	0.713	8.2	506.3	O K
15	min	Winter	93.546	0.466	8.2	331.0	O K
30	min	Winter	93.721	0.641	8.2	454.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	92.775	0.0	302.5	23
		Summer	64.070	0.0	417.9	37
60	min	Summer	41.518	0.0	541.8	66
120	min	Summer	26.230	0.0	684.6	126
180	min	Summer	19.894	0.0	778.9	186
240	min	Summer	16.313	0.0	851.6	246
360	min	Summer	12.304	0.0	964.0	364
480	min	Summer	10.060	0.0	1050.8	484
600	min	Summer	8.601	0.0	1123.0	602
720	min	Summer	7.565	0.0	1181.3	722
960	min	Summer	6.178	0.0	1239.5	932
1440	min	Summer	4.642	0.0	1213.1	1158
2160	min	Summer	3.483	0.0	1637.2	1560
2880	min	Summer	2.838	0.0	1778.3	1968
4320	min	Summer	2.123	0.0	1996.2	2812
5760	min	Summer	1.727	0.0	2165.1	3688
7200	min	Summer	1.472	0.0	2305.0	4464
8640	min	Summer	1.291	0.0	2426.9	5184
10080	min	Summer	1.156	0.0	2535.1	5856
15	min	Winter	92.775	0.0	338.8	22
30	min	Winter	64.070	0.0	468.1	37

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2A,	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Mirro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2A 1 IN 100 Y	Checked by NCG	niairiade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	93.900	0.820	8.2	581.9	O K
120	min	Winter	94.094	1.014	8.2	720.1	O K
180	min	Winter	94.242	1.162	8.2	803.3	O K
240	min	Winter	94.427	1.347	8.2	860.5	O K
360	min	Winter	94.537	1.457	8.2	936.8	O K
480	min	Winter	94.606	1.526	8.2	985.0	O K
600	min	Winter	94.652	1.572	8.2	1016.7	O K
720	min	Winter	94.682	1.602	8.2	1037.7	O K
960	min	Winter	94.752	1.672	8.2	1059.0	O K
1440	min	Winter	94.741	1.661	8.2	1058.1	O K
2160	min	Winter	94.679	1.599	8.2	1035.4	O K
2880	min	Winter	94.623	1.543	8.2	996.6	O K
4320	min	Winter	94.484	1.404	8.2	899.9	O K
5760	min	Winter	94.213	1.133	8.2	797.6	O K
7200	min	Winter	94.000	0.920	8.2	653.4	O K
8640	min	Winter	93.813	0.733	8.2	520.4	O K
10080	min	Winter	93.664	0.584	8.2	414.7	O K

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	606.7	66
120	min	Winter	26.230	0.0	766.8	124
180	min	Winter	19.894	0.0	872.7	184
240	min	Winter	16.313	0.0	954.3	242
360	min	Winter	12.304	0.0	1079.6	358
480	min	Winter	10.060	0.0	1176.9	474
600	min	Winter	8.601	0.0	1239.4	588
720	min	Winter	7.565	0.0	1270.1	700
960	min	Winter	6.178	0.0	1271.1	920
1440	min	Winter	4.642	0.0	1234.6	1316
2160	min	Winter	3.483	0.0	1833.7	1652
2880	min	Winter	2.838	0.0	1991.9	2132
4320	min	Winter	2.123	0.0	2212.4	3068
5760	min	Winter	1.727	0.0	2425.0	3984
7200	min	Winter	1.472	0.0	2582.2	4824
8640	min	Winter	1.291	0.0	2718.8	5456
10080	min	Winter	1.156	0.0	2839.7	6152

DBFL Consulting Engineers	Page 3	
Ormond House	Catchment 2A,	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2A 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	,

Storage is Online Cover Level (m) 95.400

Tank or Pond Structure

Invert Level (m) 93.080

Depth (m) Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)
0.00	0 710.0	0.700	710.0	1.400	695.0	2.100	0.0
0.10	0 710.0	0.800	710.0	1.500	695.0	2.200	0.0
0.20	0 710.0	0.900	710.0	1.600	695.0	2.300	0.0
0.30	710.0	1.000	710.0	1.700	0.0	2.400	0.0
0.40	710.0	1.100	710.0	1.800	0.0	2.500	0.0
0.50	710.0	1.200	0.0	1.900	0.0		
0.60	710.0	1.300	695.0	2.000	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0122-8200-1720-8200 Design Head (m) 1.720 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 122 Invert Level (m) 93.034 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.720	8.2
	Flush-Flo™	0.508	8.2
	Kick-Flo®	1.045	6.5
Mean Flow ove	r Head Range	-	7.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	w (1/s)	Depth (m) Flor	w (1/s)	Depth (m)	Flow (1/s)
0.100	4.4	1.200	6.9	3.000	10.7	7.000	16.0
0.200	7.1	1.400	7.4	3.500	11.5	7.500	16.5
0.300	7.8	1.600	7.9	4.000	12.2	8.000	17.0
0.400	8.1	1.800	8.4	4.500	12.9	8.500	17.5
0.500	8.2	2.000	8.8	5.000	13.6	9.000	18.0
0.600	8.1	2.200	9.2	5.500	14.2	9.500	18.5
0.800	7.8	2.400	9.6	6.000	14.8		
1.000	6.9	2.600	10.0	6.500	15.4		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 2D,	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2D 1 IN 5 YEA	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	92.495	0.095	2.1	31.7	O K
30	min	Summer	92.526	0.126	2.2	42.6	O K
60	min	Summer	92.558	0.158	2.2	54.4	O K
120	min	Summer	92.591	0.191	2.2	66.5	O K
180	min	Summer	92.608	0.208	2.2	73.0	O K
240	min	Summer	92.618	0.218	2.2	76.9	O K
360	min	Summer	92.630	0.230	2.2	81.4	O K
480	min	Summer	92.636	0.236	2.2	84.0	O K
600	min	Summer	92.640	0.240	2.2	85.5	O K
720	min	Summer	92.642	0.242	2.2	86.4	O K
960	min	Summer	92.643	0.243	2.2	86.6	O K
1440	min	Summer	92.637	0.237	2.2	84.2	O K
2160	min	Summer	92.621	0.221	2.2	78.0	O K
2880	min	Summer	92.602	0.202	2.2	70.9	O K
4320	min	Summer	92.566	0.166	2.2	57.2	O K
5760	min	Summer	92.535	0.135	2.2	46.1	O K
7200	min	Summer	92.512	0.112	2.2	37.6	O K
8640	min	Summer	92.494	0.094	2.1	31.4	O K
10080	min	Summer	92.482	0.082	2.1	27.3	O K
15	min	Winter	92.506	0.106	2.1	35.7	O K
30	min	Winter	92.541	0.141	2.2	48.0	O K

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	48.389	0.0	33.1	22
30	min	Summer	33.003	0.0	45.3	36
60	min	Summer	21.748	0.0	59.7	64
120	min	Summer	14.058	0.0	77.2	124
180	min	Summer	10.835	0.0	89.3	182
240	min	Summer	8.993	0.0	98.9	240
360	min	Summer	6.907	0.0	113.9	308
480	min	Summer	5.722	0.0	125.9	376
600	min	Summer	4.944	0.0	135.9	442
720	min	Summer	4.386	0.0	144.7	512
960	min	Summer	3.631	0.0	159.8	652
1440	min	Summer	2.781	0.0	183.5	928
2160	min	Summer	2.129	0.0	210.8	1340
2880	min	Summer	1.761	0.0	232.5	1732
4320	min	Summer	1.348	0.0	267.0	2468
5760	min	Summer	1.115	0.0	294.4	3176
7200	min	Summer	0.962	0.0	317.6	3888
8640	min	Summer	0.853	0.0	337.9	4576
10080	min	Summer	0.770	0.0	356.1	5240
15	min	Winter	48.389	0.0	37.1	22
30	min	Winter	33.003	0.0	50.7	36

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2D,	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2D 1 IN 5 YEA	Checked by NCG	Drairiage
Innovyze	Source Control 2020.1	

	Stor Even		Max Level	-	Max Control		Status
			(m)	(m)	(1/s)	(m³)	
60	min	Winter	92.577	0.177	2.2	61.5	ОК
120	min	Winter	92.615	0.215	2.2	75.5	O K
180	min	Winter	92.635	0.235	2.2	83.4	O K
240	min	Winter	92.648	0.248	2.2	88.4	O K
360	min	Winter	92.662	0.262	2.2	94.0	O K
480	min	Winter	92.668	0.268	2.2	96.3	O K
600	min	Winter	92.671	0.271	2.2	97.8	O K
720	min	Winter	92.673	0.273	2.2	98.4	O K
960	min	Winter	92.671	0.271	2.2	97.7	O K
1440	min	Winter	92.658	0.258	2.2	92.3	O K
2160	min	Winter	92.628	0.228	2.2	80.6	O K
2880	min	Winter	92.595	0.195	2.2	68.2	O K
4320	min	Winter	92.538	0.138	2.2	46.9	O K
5760	min	Winter	92.498	0.098	2.1	32.7	O K
7200	min	Winter	92.478	0.078	2.0	25.7	O K
8640	min	Winter	92.468	0.068	1.8	22.3	O K
10080	min	Winter	92.461	0.061	1.6	19.9	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Tal	01 740	0 0	66.0	C 1
		Winter	21.748	0.0	66.9	64
120	min	Winter	14.058	0.0	86.5	122
180	min	Winter	10.835	0.0	100.0	178
240	min	Winter	8.993	0.0	110.7	234
360	min	Winter	6.907	0.0	127.8	344
480	min	Winter	5.722	0.0	141.1	440
600	min	Winter	4.944	0.0	152.2	476
720	min	Winter	4.386	0.0	162.1	554
960	min	Winter	3.631	0.0	178.9	712
1440	min	Winter	2.781	0.0	205.6	1014
2160	min	Winter	2.129	0.0	236.1	1448
2880	min	Winter	1.761	0.0	260.5	1844
4320	min	Winter	1.348	0.0	299.0	2556
5760	min	Winter	1.115	0.0	329.7	3224
7200	min	Winter	0.962	0.0	355.7	3824
8640	min	Winter	0.853	0.0	378.5	4504
10080	min	Winter	0.770	0.0	398.9	5240

DBFL Consulting Engineers					
Ormond House	Catchment 2D,				
Upper Ormond Quay	Newcastle, South				
Dublin 7	Co.Dublin	Micro			
Date 13/06/2022	Designed by COL	Drainage			
File CATCHMENT 2D 1 IN 5 YEA	Checked by NCG	Dialilade			
Innovyze	Source Control 2020.1				

Storage is Online Cover Level (m) 94.000

Tank or Pond Structure

Invert Level (m) 92.400

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.0	000	32	20.0	0.	700		0.0	1.	.400		0.0	2.	100		0.0
0.2	100	35	50.0	0.	800		0.0	1.	.500		0.0	2.	200		0.0
0.2	200	38	30.0	0.	900		0.0	1.	.600		0.0	2.	300		0.0
0.3	300	41	10.0	1.	000		0.0	1.	.700		0.0	2.	400		0.0
0.4	400	44	10.0	1.	100		0.0	1.	.800		0.0	2.	500		0.0
0.5	500	47	70.0	1.	200		0.0	1.	.900		0.0				
0.6	600		0.0	1.	300		0.0	2.	.000		0.0				

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0076-2200-0600-2200 Design Head (m) 0.600 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 76 Diameter (mm) Invert Level (m) 92.386 100 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 0.600 2.2 Flush-Flo $^{\text{m}}$ 0.179 2.2 Kick-Flo $^{\text{m}}$ 0.401 1.8 Mean Flow over Head Range - 1.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flor	v (1/s)	Depth (m)	Flow (1/s)
0.100	2.1	1.200	3.0	3.000	4.6	7.000	6.9
0.200	2.2	1.400	3.2	3.500	5.0	7.500	7.1
0.300	2.1	1.600	3.4	4.000	5.3	8.000	7.4
0.400	1.8	1.800	3.6	4.500	5.6	8.500	7.6
0.500	2.0	2.000	3.8	5.000	5.9	9.000	7.8
0.600	2.2	2.200	4.0	5.500	6.1	9.500	8.0
0.800	2.5	2.400	4.2	6.000	6.4		
1.000	2.8	2.600	4.3	6.500	6.6		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 2D,	
Upper Ormond Quay	Newcastle, sOUTH	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2D 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	92.579	0.179	2.2	61.9	O K
30	min	Summer	92.639	0.239	2.2	84.9	O K
60	min	Summer	92.697	0.297	2.2	108.1	O K
120	min	Summer	92.755	0.355	2.2	132.4	O K
180	min	Summer	92.788	0.388	2.2	146.6	O K
240	min	Summer	92.810	0.410	2.2	156.2	O K
360	min	Summer	92.836	0.436	2.2	167.9	O K
480	min	Summer	92.849	0.449	2.2	174.1	O K
600	min	Summer	92.856	0.456	2.2	177.2	O K
720	min	Summer	92.859	0.459	2.2	178.4	O K
960	min	Summer	92.861	0.461	2.2	179.3	O K
1440	min	Summer	92.858	0.458	2.2	177.8	O K
2160	min	Summer	92.844	0.444	2.2	171.7	O K
2880	min	Summer	92.826	0.426	2.2	163.6	O K
4320	min	Summer	92.781	0.381	2.2	143.7	O K
5760	min	Summer	92.729	0.329	2.2	121.6	O K
7200	min	Summer	92.682	0.282	2.2	102.2	O K
8640	min	Summer	92.640	0.240	2.2	85.3	O K
10080	min	Summer	92.602	0.202	2.2	70.8	O K
15	min	Winter	92.599	0.199	2.2	69.5	O K
30	min	Winter	92.665	0.265	2.2	95.4	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	92.775	0.0	63.7	22
30	min	Summer	64.070	0.0	88.0	37
60	min	Summer	41.518	0.0	114.1	66
120	min	Summer	26.230	0.0	144.2	126
180	min	Summer	19.894	0.0	164.1	184
240	min	Summer	16.313	0.0	179.4	244
360	min	Summer	12.304	0.0	203.0	362
480	min	Summer	10.060	0.0	221.4	482
600	min	Summer	8.601	0.0	236.6	600
720	min	Summer	7.565	0.0	249.7	690
960	min	Summer	6.178	0.0	271.6	806
1440	min	Summer	4.642	0.0	300.8	1068
2160	min	Summer	3.483	0.0	345.0	1476
2880	min	Summer	2.838	0.0	374.7	1904
4320	min	Summer	2.123	0.0	420.6	2728
5760	min	Summer	1.727	0.0	456.3	3464
7200	min	Summer	1.472	0.0	485.9	4184
8640	min	Summer	1.291	0.0	511.5	4928
10080	min	Summer	1.156	0.0	534.3	5640
15	min	Winter	92.775	0.0	71.3	22
30	min	Winter	64.070	0.0	98.6	36

DBFL Consulting Engineers				
Ormond House	Catchment 2D,			
Upper Ormond Quay	Newcastle, sOUTH			
Dublin 7	Co.Dublin	Mirro		
Date 13/06/2022	Designed by COL	Drainage		
File CATCHMENT 2D 1 IN 100 Y	Checked by NCG	Dialilade		
Innovyze	Source Control 2020.1			

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	92.730	0.330	2.2	121.7	O K
120	min	Winter	92.795	0.395	2.2	149.9	O K
180	min	Winter	92.832	0.432	2.2	166.3	O K
240	min	Winter	92.857	0.457	2.2	177.4	O K
360	min	Winter	92.887	0.487	2.2	191.5	O K
480	min	Winter	92.905	0.505	2.2	199.6	O K
600	min	Winter	92.917	0.517	2.2	204.3	O K
720	min	Winter	92.926	0.526	2.2	206.7	O K
960	min	Winter	92.930	0.530	2.2	207.7	O K
1440	min	Winter	92.919	0.519	2.2	204.7	O K
2160	min	Winter	92.895	0.495	2.2	195.0	O K
2880	min	Winter	92.866	0.466	2.2	181.8	O K
4320	min	Winter	92.797	0.397	2.2	150.5	O K
5760	min	Winter	92.710	0.310	2.2	113.4	O K
7200	min	Winter	92.635	0.235	2.2	83.6	O K
8640	min	Winter	92.574	0.174	2.2	60.0	O K
10080	min	Winter	92.528	0.128	2.2	43.5	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Tal	41 [10	0 0	107.0	6.6
		Winter		0.0	127.8	66
120	min	Winter	26.230	0.0	161.6	124
180	min	Winter	19.894	0.0	183.8	182
240	min	Winter	16.313	0.0	201.0	240
360	min	Winter	12.304	0.0	227.4	356
480	min	Winter	10.060	0.0	247.9	470
600	min	Winter	8.601	0.0	265.0	582
720	min	Winter	7.565	0.0	279.4	692
960	min	Winter	6.178	0.0	302.0	898
1440	min	Winter	4.642	0.0	324.9	1126
2160	min	Winter	3.483	0.0	386.4	1600
2880	min	Winter	2.838	0.0	419.7	2052
4320	min	Winter	2.123	0.0	471.1	2980
5760	min	Winter	1.727	0.0	511.1	3696
7200	min	Winter	1.472	0.0	544.2	4400
8640	min	Winter	1.291	0.0	572.9	5024
10080	min	Winter	1.156	0.0	598.4	5648

DBFL Consulting Engineers		Page 3
Ormond House	Catchment 2D,	
Upper Ormond Quay	Newcastle, sOUTH	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2D 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 94.000

Tank or Pond Structure

Invert Level (m) 92.400

Depth (m)	Area (m²)	Depth (m) A	Area (m²)	Depth (m) Area	(m²)	Depth (m)	Area (m²)
0.000	320.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	350.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	380.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	410.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	440.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	470.0	1.200	0.0	1.900	0.0		
0.600	0.0	1.300	0.0	2.000	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0076-2200-0600-2200 Design Head (m) 0.600 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 76 Diameter (mm) Invert Level (m) 92.386 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	0.600	2.2
	Flush-Flo™	0.179	2.2
	Kick-Flo®	0.401	1.8
Mean Flow ove	r Head Range	_	1.9

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flor	v (1/s)	Depth (m)	Flow (1/s)
0.100	2.1	1.200	3.0	3.000	4.6	7.000	6.9
0.200	2.2	1.400	3.2	3.500	5.0	7.500	7.1
0.300	2.1	1.600	3.4	4.000	5.3	8.000	7.4
0.400	1.8	1.800	3.6	4.500	5.6	8.500	7.6
0.500	2.0	2.000	3.8	5.000	5.9	9.000	7.8
0.600	2.2	2.200	4.0	5.500	6.1	9.500	8.0
0.800	2.5	2.400	4.2	6.000	6.4		
1.000	2.8	2.600	4.3	6.500	6.6		

DBFL Consulting Engineers		Page 1
Ormond House	Catchment 2E 1 in 5 Year	
Upper Ormond Quay	Newcastle, South	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2E 1 IN 5 YEA	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	•

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	93.787	0.087	3.6	60.7	O K
30	min	Summer	93.816	0.116	3.7	81.3	O K
60	min	Summer	93.848	0.148	3.7	103.4	O K
120	min	Summer	93.879	0.179	3.8	125.3	O K
180	min	Summer	93.895	0.195	3.8	136.4	O K
240	min	Summer	93.904	0.204	3.8	142.7	O K
360	min	Summer	93.911	0.211	3.8	147.8	O K
480	min	Summer	93.914	0.214	3.8	149.5	O K
600	min	Summer	93.915	0.215	3.8	150.5	O K
720	min	Summer	93.916	0.216	3.8	151.0	O K
960	min	Summer	93.916	0.216	3.8	150.9	O K
1440	min	Summer	93.910	0.210	3.8	147.3	O K
2160	min	Summer	93.897	0.197	3.8	137.6	O K
2880	min	Summer	93.880	0.180	3.8	126.0	O K
4320	min	Summer	93.845	0.145	3.7	101.8	O K
5760	min	Summer	93.814	0.114	3.7	80.0	O K
7200	min	Summer	93.788	0.088	3.6	61.4	O K
8640	min	Summer	93.766	0.066	3.5	46.2	O K
10080	min	Summer	93.748	0.048	3.4	33.7	O K
15	min	Winter	93.798	0.098	3.6	68.5	O K
30	min	Winter	93.832	0.132	3.7	92.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	48.389	0.0	64.8	22
30	min	Summer	33.003	0.0	88.3	37
60	min	Summer	21.748	0.0	116.4	66
120	min	Summer	14.058	0.0	151.0	124
180	min	Summer	10.835	0.0	174.4	184
240	min	Summer	8.993	0.0	193.0	242
360	min	Summer	6.907	0.0	222.4	330
480	min	Summer	5.722	0.0	245.9	394
600	min	Summer	4.944	0.0	265.7	462
720	min	Summer	4.386	0.0	282.7	526
960	min	Summer	3.631	0.0	312.2	668
1440	min	Summer	2.781	0.0	358.7	944
2160	min	Summer	2.129	0.0	412.1	1364
2880	min	Summer	1.761	0.0	454.1	1760
4320	min	Summer	1.348	0.0	521.3	2552
5760	min	Summer	1.115	0.0	575.2	3288
7200	min	Summer	0.962	0.0	620.4	4032
8640	min	Summer	0.853	0.0	660.2	4680
10080	min	Summer	0.770	0.0	695.7	5440
15	min	Winter	48.389	0.0	72.5	22
30	min	Winter	33.003	0.0	99.1	36

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2E 1 in 5 Year	
Upper Ormond Quay	Newcastle, South	
Dublin 7		Mirro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2E 1 IN 5 YEA	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	93.868	0.168	3.8	117.6	O K
120	min	Winter	93.906	0.206	3.8	144.0	ОК
180	min	Winter	93.926	0.226	3.8	158.3	O K
240	min	Winter	93.939	0.239	3.8	167.0	O K
360	min	Winter	93.951	0.251	3.8	176.0	O K
480	min	Winter	93.955	0.255	3.8	178.8	O K
600	min	Winter	93.955	0.255	3.8	178.8	O K
720	min	Winter	93.955	0.255	3.8	178.4	O K
960	min	Winter	93.952	0.252	3.8	176.3	O K
1440	min	Winter	93.940	0.240	3.8	167.9	O K
2160	min	Winter	93.913	0.213	3.8	149.1	O K
2880	min	Winter	93.883	0.183	3.8	128.2	O K
4320	min	Winter	93.828	0.128	3.7	89.3	O K
5760	min	Winter	93.782	0.082	3.6	57.5	O K
7200	min	Winter	93.748	0.048	3.4	33.3	O K
8640	min	Winter	93.722	0.022	3.3	15.7	O K
10080	min	Winter	93.706	0.006	3.1	3.9	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	21.748	0.0	130.7	64
			14.058	0.0		122
		Winter			169.0	
180	min	Winter	10.835	0.0	195.3	180
240	min	Winter	8.993	0.0	216.4	236
360	min	Winter	6.907	0.0	249.4	348
480	min	Winter	5.722	0.0	275.7	452
600	min	Winter	4.944	0.0	297.3	494
720	min	Winter	4.386	0.0	316.6	568
960	min	Winter	3.631	0.0	349.5	726
1440	min	Winter	2.781	0.0	401.5	1030
2160	min	Winter	2.129	0.0	461.1	1476
2880	min	Winter	1.761	0.0	508.6	1900
4320	min	Winter	1.348	0.0	584.2	2684
5760	min	Winter	1.115	0.0	644.3	3408
7200	min	Winter	0.962	0.0	695.2	4104
8640	min	Winter	0.853	0.0	739.5	4752
10080	min	Winter	0.770	0.0	779.2	5344

DBFL Consulting Engineers	Page 3	
Ormond House	Catchment 2E 1 in 5 Year	
Upper Ormond Quay	Newcastle, South	
Dublin 7		Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2E 1 IN 5 YEA	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 95.450

Tank or Pond Structure

Invert Level (m) 93.700

Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.0	000	7(0.00	0.	700		0.0	1.	.400		0.0	2.	100		0.0
0.1	100	7(0.00	0.	800		0.0	1.	500		0.0	2.	200		0.0
0.2	200	7(0.00	0.	900		0.0	1.	600		0.0	2.	300		0.0
0.3	300	7(0.00	1.	000		0.0	1.	700		0.0	2.	400		0.0
0.4	400		0.0	1.	100		0.0	1.	.800		0.0	2.	500		0.0
0.5	500		0.0	1.	200		0.0	1.	.900		0.0				
0.6	600		0.0	1.	300		0.0	2.	.000		0.0				

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0090-3800-1179-3800 Design Head (m) 1.179 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 90 Diameter (mm) Invert Level (m) 93.590 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	1.179	3.8
	Flush-Flo™	0.355	3.8
	Kick-Flo®	0.733	3.1
Mean Flow ove	r Head Range	-	3.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.8	1.200	3.8	3.000	5.9	7.000	8.8
0.200	3.6	1.400	4.1	3.500	6.3	7.500	9.0
0.300	3.8	1.600	4.4	4.000	6.7	8.000	9.3
0.400	3.8	1.800	4.6	4.500	7.1	8.500	9.6
0.500	3.7	2.000	4.9	5.000	7.5	9.000	9.9
0.600	3.6	2.200	5.1	5.500	7.8	9.500	10.1
0.800	3.2	2.400	5.3	6.000	8.1		
1.000	3.5	2.600	5.5	6.500	8.5		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 2E, 1 in 100 year	
Upper Ormond Quay	Newcastle, South ,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2E 1 IN 100 Y	Checked by NCG	Dialilade
Innovvze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	93.871	0.171	3.8	120.0	O K
30	min	Summer	93.935	0.235	3.8	164.4	O K
60	min	Summer	93.999	0.299	3.8	209.0	O K
120	min	Summer	94.090	0.390	3.8	255.3	O K
180	min	Summer	94.177	0.477	3.8	281.8	O K
240	min	Summer	94.237	0.537	3.8	299.7	O K
360	min	Summer	94.315	0.615	3.8	323.1	O K
480	min	Summer	94.361	0.661	3.8	335.9	O K
600	min	Summer	94.385	0.685	3.8	342.3	O K
720	min	Summer	94.394	0.694	3.8	344.6	O K
960	min	Summer	94.386	0.686	3.8	342.4	O K
1440	min	Summer	94.360	0.660	3.8	335.7	O K
2160	min	Summer	94.317	0.617	3.8	323.6	O K
2880	min	Summer	94.259	0.559	3.8	306.3	O K
4320	min	Summer	94.138	0.438	3.8	270.1	O K
5760	min	Summer	94.041	0.341	3.8	235.0	O K
7200	min	Summer	93.989	0.289	3.8	202.0	O K
8640	min	Summer	93.946	0.246	3.8	171.9	O K
10080	min	Summer	93.907	0.207	3.8	144.8	O K
15	min	Winter	93.893	0.193	3.8	135.0	O K
30	min	Winter	93.965	0.265	3.8	185.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	92.775	0.0	124.4	22
30	min	Summer	64.070	0.0	171.9	37
60	min	Summer	41.518	0.0	222.8	66
120	min	Summer	26.230	0.0	281.8	126
180	min	Summer	19.894	0.0	320.4	186
240	min	Summer	16.313	0.0	350.4	246
360	min	Summer	12.304	0.0	396.7	364
480	min	Summer	10.060	0.0	432.4	484
600	min	Summer	8.601	0.0	462.0	602
720	min	Summer	7.565	0.0	487.8	722
960	min	Summer	6.178	0.0	531.2	914
1440	min	Summer	4.642	0.0	584.9	1156
2160	min	Summer	3.483	0.0	674.0	1560
2880	min	Summer	2.838	0.0	731.8	1956
4320	min	Summer	2.123	0.0	821.5	2728
5760	min	Summer	1.727	0.0	891.2	3520
7200	min	Summer	1.472	0.0	949.3	4256
8640	min	Summer	1.291	0.0	998.9	5016
10080	min	Summer	1.156	0.0	1043.4	5752
15	min	Winter	92.775	0.0	139.4	22
30	min	Winter	64.070	0.0	192.6	37

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2E, 1 in 100 year	
Upper Ormond Quay	Newcastle, South ,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2E 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	94.044	0.344	3.8	236.2	ОК
120	min	Winter	94.205	0.505	3.8	290.0	O K
180	min	Winter	94.312	0.612	3.8	322.2	O K
240	min	Winter	94.394	0.694	3.8	344.4	O K
360	min	Winter	94.505	0.805	3.8	372.1	O K
480	min	Winter	94.568	0.868	3.8	387.9	O K
600	min	Winter	94.606	0.906	3.8	397.1	O K
720	min	Winter	94.637	0.937	3.8	402.0	O K
960	min	Winter	94.672	0.972	3.8	403.9	O K
1440	min	Winter	94.591	0.891	3.8	393.7	O K
2160	min	Winter	94.525	0.825	3.8	377.2	O K
2880	min	Winter	94.442	0.742	3.8	356.4	O K
4320	min	Winter	94.220	0.520	3.8	294.6	O K
5760	min	Winter	94.040	0.340	3.8	234.2	O K
7200	min	Winter	93.961	0.261	3.8	182.6	O K
8640	min	Winter	93.898	0.198	3.8	138.4	O K
10080	min	Winter	93.846	0.146	3.7	102.0	O K

	Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			44 540	0 0	0.40	
		Winter		0.0	249.7	66
120	min	Winter	26.230	0.0	315.5	124
180	min	Winter	19.894	0.0	359.2	184
240	min	Winter	16.313	0.0	392.6	242
360	min	Winter	12.304	0.0	444.1	358
480	min	Winter	10.060	0.0	484.3	472
600	min	Winter	8.601	0.0	517.6	586
720	min	Winter	7.565	0.0	546.3	698
960	min	Winter	6.178	0.0	594.9	914
1440	min	Winter	4.642	0.0	597.4	1182
2160	min	Winter	3.483	0.0	754.9	1644
2880	min	Winter	2.838	0.0	820.3	2128
4320	min	Winter	2.123	0.0	920.6	2988
5760	min	Winter	1.727	0.0	998.8	3752
7200	min	Winter	1.472	0.0	1063.0	4536
8640	min	Winter	1.291	0.0	1119.1	5272
10080	min	Winter	1.156	0.0	1169.4	5952

DBFL Consulting Engineers				
Ormond House	Catchment 2E, 1 in 100 year			
Upper Ormond Quay	Newcastle, South ,			
Dublin 7	Co.Dublin	Micro		
Date 13/06/2022	Designed by COL	Drainage		
File CATCHMENT 2E 1 IN 100 Y	Checked by NCG	Dialilade		
Innovyze	Source Control 2020.1			

Storage is Online Cover Level (m) 95.450

Tank or Pond Structure

Invert Level (m) 93.700

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) Area	(m²)	Depth (m)	Area (m²)
0.000	700.0	0.700	249.0	1.400	0.0	2.100	0.0
0.100	700.0	0.800	249.0	1.500	0.0	2.200	0.0
0.200	700.0	0.900	249.0	1.600	0.0	2.300	0.0
0.300	700.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	300.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	300.0	1.200	0.0	1.900	0.0		
0.600	300.0	1.300	0.0	2.000	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0090-3800-1150-3800 Design Head (m) 1.150 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 90 Diameter (mm) Invert Level (m) 93.590 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points	Head (m)	Flow (1/s)
Design Point (Calculated)	1.150	3.8
Flush-Flo™	0.346	3.8
Kick-Flo®	0.716	3.1
Mean Flow over Head Range	-	3.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	2.8	1.200	3.9	3.000	5.9	7.000	8.9
0.200	3.6	1.400	4.2	3.500	6.4	7.500	9.1
0.300	3.8	1.600	4.4	4.000	6.8	8.000	9.4
0.400	3.8	1.800	4.7	4.500	7.2	8.500	9.7
0.500	3.7	2.000	4.9	5.000	7.5	9.000	10.0
0.600	3.5	2.200	5.1	5.500	7.9	9.500	10.2
0.800	3.2	2.400	5.3	6.000	8.2		
1.000	3.6	2.600	5.5	6.500	8.5		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 2f, Pond 1 1 in 100	
Upper Ormond Quay	Newcastle, South,	
Dublin 7	CO, Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	96.563	0.063	11.8	6.3	O K
30	min	Summer	96.569	0.069	12.4	6.9	O K
60	min	Summer	96.562	0.062	11.6	6.2	O K
120	min	Summer	96.546	0.046	9.9	4.6	O K
180	min	Summer	96.534	0.034	8.6	3.4	O K
240	min	Summer	96.524	0.024	7.5	2.4	O K
360	min	Summer	96.511	0.011	6.3	1.1	O K
480	min	Summer	96.503	0.003	5.7	0.3	O K
600	min	Summer	96.500	0.000	5.2	0.0	O K
720	min	Summer	96.500	0.000	4.6	0.0	O K
960	min	Summer	96.500	0.000	3.7	0.0	O K
1440	min	Summer	96.500	0.000	2.8	0.0	O K
2160	min	Summer	96.500	0.000	2.1	0.0	O K
2880	min	Summer	96.500	0.000	1.7	0.0	O K
4320	min	Summer	96.500	0.000	1.3	0.0	O K
5760	min	Summer	96.500	0.000	1.0	0.0	O K
7200	min	Summer	96.500	0.000	0.9	0.0	O K
8640	min	Summer	96.500	0.000	0.8	0.0	O K
10080	min	Summer	96.500	0.000	0.7	0.0	O K
15	min	Winter	96.572	0.072	12.8	7.2	O K
30	min	Winter	96.575	0.075	13.1	7.5	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	92.775	0.0	12.9	13
30	min	Summer	64.070	0.0	17.9	21
60	min	Summer	41.518	0.0	23.0	38
120	min	Summer	26.230	0.0	29.3	70
180	min	Summer	19.894	0.0	33.1	100
240	min	Summer	16.313	0.0	36.1	130
360	min	Summer	12.304	0.0	41.0	190
480	min	Summer	10.060	0.0	44.6	248
600	min	Summer	8.601	0.0	47.7	0
720	min	Summer	7.565	0.0	50.4	0
960	min	Summer	6.178	0.0	54.9	0
1440	min	Summer	4.642	0.0	61.8	0
2160	min	Summer	3.483	0.0	69.6	0
2880	min	Summer	2.838	0.0	75.6	0
4320	min	Summer	2.123	0.0	84.8	0
5760	min	Summer	1.727	0.0	92.0	0
7200	min	Summer	1.472	0.0	98.0	0
8640	min	Summer	1.291	0.0	103.2	0
10080	min	Summer	1.156	0.0	107.8	0
15	min	Winter	92.775	0.0	14.3	13
30	min	Winter	64.070	0.0	19.8	22

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2f, Pond 1 1 in 100	
Upper Ormond Quay	Newcastle, South,	
Dublin 7	CO, Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	'

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	96.562	0.062	11.6	6.2	O K
120	min	Winter	96.539	0.039	9.2	3.9	O K
180	min	Winter	96.524	0.024	7.5	2.4	O K
240	min	Winter	96.512	0.012	6.5	1.2	O K
360	min	Winter	96.500	0.000	5.4	0.0	O K
480	min	Winter	96.500	0.000	4.4	0.0	O K
600	min	Winter	96.500	0.000	3.8	0.0	O K
720	min	Winter	96.500	0.000	3.3	0.0	O K
960	min	Winter	96.500	0.000	2.7	0.0	O K
1440	min	Winter	96.500	0.000	2.0	0.0	O K
2160	min	Winter	96.500	0.000	1.5	0.0	O K
2880	min	Winter	96.500	0.000	1.2	0.0	O K
4320	min	Winter	96.500	0.000	0.9	0.0	O K
5760	min	Winter	96.500	0.000	0.8	0.0	O K
7200	min	Winter	96.500	0.000	0.6	0.0	O K
8640	min	Winter	96.500	0.000	0.6	0.0	O K
10080	min	Winter	96.500	0.000	0.5	0.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	41.518	0.0	25.7	40
		Winter		0.0	32.6	72
			19.894	0.0	37.1	104
240	min	Winter	16.313	0.0	40.6	134
360	min	Winter	12.304	0.0	45.9	0
480	min	Winter	10.060	0.0	50.0	0
600	min	Winter	8.601	0.0	53.5	0
720	min	Winter	7.565	0.0	56.4	0
960	min	Winter	6.178	0.0	61.4	0
1440	min	Winter	4.642	0.0	69.3	0
2160	min	Winter	3.483	0.0	77.9	0
2880	min	Winter	2.838	0.0	84.7	0
4320	min	Winter	2.123	0.0	95.0	0
5760	min	Winter	1.727	0.0	103.1	0
7200	min	Winter	1.472	0.0	109.8	0
8640	min	Winter	1.291	0.0	115.6	0
10080	min	Winter	1.156	0.0	120.7	0

DBFL Consulting Engineers	Page 3	
Ormond House	Catchment 2f, Pond 1 1 in 100	
Upper Ormond Quay	Newcastle, South,	
Dublin 7	CO, Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	•

Storage is Online Cover Level (m) 97.000

Tank or Pond Structure

Invert Level (m) 96.500

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) Area	(m²)	Depth (m)	Area (m²)
0.000	100.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	100.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	100.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	100.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	100.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	100.0	1.200	0.0	1.900	0.0		
0.600	100.0	1.300	0.0	2.000	0.0		

Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 96.400

DBFL Consulting Engineers		Page 1
Ormond House	Catchment 2 f Pond 2 1 in 100	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	95.413	0.113	1.3	45.4	O K
30	min	Summer	95.455	0.155	1.3	62.1	O K
60	min	Summer	95.497	0.197	1.3	79.0	O K
120	min	Summer	95.541	0.241	1.3	96.6	O K
180	min	Summer	95.567	0.267	1.3	106.9	O K
240	min	Summer	95.585	0.285	1.3	113.9	O K
360	min	Summer	95.607	0.307	1.3	122.9	O K
480	min	Summer	95.620	0.320	1.3	127.9	O K
600	min	Summer	95.626	0.326	1.3	130.6	O K
720	min	Summer	95.629	0.329	1.3	131.7	O K
960	min	Summer	95.628	0.328	1.3	131.3	O K
1440	min	Summer	95.623	0.323	1.3	129.2	O K
2160	min	Summer	95.614	0.314	1.3	125.6	O K
2880	min	Summer	95.602	0.302	1.3	121.0	O K
4320	min	Summer	95.572	0.272	1.3	108.7	O K
5760	min	Summer	95.539	0.239	1.3	95.5	O K
7200	min	Summer	95.507	0.207	1.3	82.8	O K
8640	min	Summer	95.477	0.177	1.3	70.9	O K
10080	min	Summer	95.450	0.150	1.3	59.8	O K
15	min	Winter	95.427	0.127	1.3	51.0	O K
30	min	Winter	95.475	0.175	1.3	69.9	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	92.775	0.0	46.6	19
30	min	Summer	64.070	0.0	64.4	34
60	min	Summer	41.518	0.0	83.5	64
120	min	Summer	26.230	0.0	105.5	122
180	min	Summer	19.894	0.0	120.2	182
240	min	Summer	16.313	0.0	131.4	242
360	min	Summer	12.304	0.0	148.8	362
480	min	Summer	10.060	0.0	162.2	482
600	min	Summer	8.601	0.0	173.3	602
720	min	Summer	7.565	0.0	182.9	720
960	min	Summer	6.178	0.0	199.2	954
1440	min	Summer	4.642	0.0	203.9	1198
2160	min	Summer	3.483	0.0	252.7	1584
2880	min	Summer	2.838	0.0	274.7	2016
4320	min	Summer	2.123	0.0	308.2	2808
5760	min	Summer	1.727	0.0	334.3	3584
7200	min	Summer	1.472	0.0	356.3	4392
8640	min	Summer	1.291	0.0	374.9	5104
10080	min	Summer	1.156	0.0	391.7	5848
15	min	Winter	92.775	0.0	52.2	19
30	min	Winter	64.070	0.0	72.2	33

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 2 f Pond 2 1 in 100	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Mirro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Drairiage
Innovyze	Source Control 2020.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	95.523	0.223	1.3	89.1	O K
120	min	Winter	95.574	0.274	1.3	109.6	ОК
180	min	Winter	95.605	0.305	1.3	121.9	O K
240	min	Winter	95.626	0.326	1.3	130.3	O K
360	min	Winter	95.653	0.353	1.3	141.3	O K
480	min	Winter	95.670	0.370	1.3	147.9	O K
600	min	Winter	95.680	0.380	1.3	152.0	O K
720	min	Winter	95.686	0.386	1.3	154.5	O K
960	min	Winter	95.691	0.391	1.3	156.3	O K
1440	min	Winter	95.684	0.384	1.3	153.4	O K
2160	min	Winter	95.669	0.369	1.3	147.5	O K
2880	min	Winter	95.652	0.352	1.3	140.7	O K
4320	min	Winter	95.606	0.306	1.3	122.4	O K
5760	min	Winter	95.548	0.248	1.3	99.1	O K
7200	min	Winter	95.495	0.195	1.3	78.1	O K
8640	min	Winter	95.448	0.148	1.3	59.4	O K
10080	min	Winter	95.408	0.108	1.3	43.2	O K

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Winter	41.518	0.0	93.6	62
		Winter	26.230	0.0	118.3	122
180	min	Winter	19.894	0.0	134.6	180
240	min	Winter	16.313	0.0	147.2	238
360	min	Winter	12.304	0.0	166.5	356
480	min	Winter	10.060	0.0	181.6	472
600	min	Winter	8.601	0.0	194.2	586
720	min	Winter	7.565	0.0	205.0	700
960	min	Winter	6.178	0.0	207.7	924
1440	min	Winter	4.642	0.0	203.7	1342
2160	min	Winter	3.483	0.0	283.0	1684
2880	min	Winter	2.838	0.0	307.4	2160
4320	min	Winter	2.123	0.0	345.3	3108
5760	min	Winter	1.727	0.0	374.4	3912
7200	min	Winter	1.472	0.0	398.9	4680
8640	min	Winter	1.291	0.0	419.8	5368
10080	min	Winter	1.156	0.0	438.6	6056

DBFL Consulting Engineers	Page 3	
Ormond House	Catchment 2 f Pond 2 1 in 100	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 2F 1 IN 100 Y	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

Storage is Online Cover Level (m) 96.300

Tank or Pond Structure

Invert Level (m) 95.300

Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) Area	(m²)	Depth (m)	Area (m²)
0.000	400.0	0.700	0.0	1.400	0.0	2.100	0.0
0.100	400.0	0.800	0.0	1.500	0.0	2.200	0.0
0.200	400.0	0.900	0.0	1.600	0.0	2.300	0.0
0.300	400.0	1.000	0.0	1.700	0.0	2.400	0.0
0.400	400.0	1.100	0.0	1.800	0.0	2.500	0.0
0.500	400.0	1.200	0.0	1.900	0.0		
0.600	400.0	1.300	0.0	2.000	0.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0059-1300-0610-1300 Design Head (m) 0.610 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes 59 Diameter (mm) Invert Level (m) 95.200 75 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1200

Control	Points	Head (m)	Flow (1/s)
Design Point	(Calculated)	0.610	1.3
	Flush-Flo™	0.185	1.3
	Kick-Flo®	0.397	1.1
Mean Flow ove	r Head Range	_	1.1

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Fl	ow (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	1.2	1.200	1.8	3.000	2.7	7.000	4.0
0.200	1.3	1.400	1.9	3.500	2.9	7.500	4.1
0.300	1.3	1.600	2.0	4.000	3.1	8.000	4.3
0.400	1.1	1.800	2.1	4.500	3.2	8.500	4.4
0.500	1.2	2.000	2.2	5.000	3.4	9.000	4.5
0.600	1.3	2.200	2.3	5.500	3.6	9.500	4.6
0.800	1.5	2.400	2.4	6.000	3.7		
1.000	1.6	2.600	2.5	6.500	3.8		

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 3 1 in 30 year	
Upper Ormond Quay	Newcastle South,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 3 1 IN 30 YEA	Checked by COL	Drainage
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period (+20%)

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	92.816	0.216	1.7	47.6	O K
30	min	Summer	92.895	0.295	1.7	64.9	O K
60	min	Summer	92.977	0.377	1.7	83.0	ОК
120	min	Summer	93.065	0.465	1.7	102.3	O K
180	min	Summer	93.115	0.515	1.7	113.2	O K
240	min	Summer	93.147	0.547	1.7	120.4	O K
360	min	Summer	93.186	0.586	1.7	129.0	O K
480	min	Summer	93.205	0.605	1.7	133.2	O K
600	min	Summer	93.213	0.613	1.7	134.8	O K
720	min	Summer	93.214	0.614	1.7	135.0	O K
960	min	Summer	93.213	0.613	1.7	134.9	O K
1440	min	Summer	93.210	0.610	1.7	134.1	O K
2160	min	Summer	93.197	0.597	1.7	131.4	O K
2880	min	Summer	93.177	0.577	1.7	126.9	O K
4320	min	Summer	93.125	0.525	1.7	115.5	O K
5760	min	Summer	93.066	0.466	1.7	102.6	O K
7200	min	Summer	92.999	0.399	1.7	87.8	O K
8640	min	Summer	92.920	0.320	1.7	70.4	O K
10080	min	Summer	92.857	0.257	1.7	56.5	O K
15	min	Winter	92.844	0.244	1.7	53.6	O K
30	min	Winter	92.933	0.333	1.7	73.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			71.420	0.0	49.6	22
30	min	Summer	49.076	0.0	68.4	36
60	min	Summer	32.017	0.0	89.2	66
120	min	Summer	20.414	0.0	113.7	124
180	min	Summer	15.583	0.0	130.3	184
240	min	Summer	12.841	0.0	143.2	244
360	min	Summer	9.756	0.0	163.2	362
480	min	Summer	8.019	0.0	178.9	482
600	min	Summer	6.885	0.0	192.1	600
720	min	Summer	6.077	0.0	203.4	700
960	min	Summer	4.990	0.0	222.7	816
1440	min	Summer	3.778	0.0	252.9	1080
2160	min	Summer	2.858	0.0	286.8	1492
2880	min	Summer	2.343	0.0	313.8	1908
4320	min	Summer	1.769	0.0	355.3	2764
5760	min	Summer	1.449	0.0	387.7	3576
7200	min	Summer	1.241	0.0	415.3	4400
8640	min	Summer	1.093	0.0	438.9	5096
10080	min	Summer	0.982	0.0	460.4	5752
15	min	Winter	71.420	0.0	55.6	22
30	min	Winter	49.076	0.0	76.6	36

©1982-2020 Innovyze

DBFL Consulting Engineers	Page 2	
Ormond House	Catchment 3 1 in 30 year	
Upper Ormond Quay	Newcastle South,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 3 1 IN 30 YEA	Checked by COL	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 30 year Return Period (+20%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	93.027	0.427	1.7	94.0	O K
120	min	Winter	93.128	0.528	1.7	116.1	O K
180	min	Winter	93.187	0.587	1.7	129.1	O K
240	min	Winter	93.227	0.627	1.7	137.9	O K
360	min	Winter	93.277	0.677	1.7	149.0	O K
480	min	Winter	93.306	0.706	1.7	155.3	O K
600	min	Winter	93.322	0.722	1.7	158.8	O K
720	min	Winter	93.329	0.729	1.7	160.5	O K
960	min	Winter	93.330	0.730	1.7	160.6	O K
1440	min	Winter	93.316	0.716	1.7	157.5	O K
2160	min	Winter	93.292	0.692	1.7	152.3	O K
2880	min	Winter	93.255	0.655	1.7	144.1	O K
4320	min	Winter	93.165	0.565	1.7	124.3	O K
5760	min	Winter	93.065	0.465	1.7	102.4	O K
7200	min	Winter	92.936	0.336	1.7	73.9	O K
8640	min	Winter	92.827	0.227	1.7	50.0	O K
10080	min	Winter	92.744	0.144	1.7	31.7	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	32.017	0.0	100.0	64
120		Winter	20.414	0.0	127.5	122
180	min	Winter	15.583	0.0	146.0	180
240	min	Winter	12.841	0.0	160.4	240
360	min	Winter	9.756	0.0	182.8	354
480	min	Winter	8.019	0.0	200.3	468
600	min	Winter	6.885	0.0	215.1	582
720	min	Winter	6.077	0.0	227.7	692
960	min	Winter	4.990	0.0	249.3	902
1440	min	Winter	3.778	0.0	267.3	1132
2160	min	Winter	2.858	0.0	321.5	1604
2880	min	Winter	2.343	0.0	351.3	2076
4320	min	Winter	1.769	0.0	398.0	2984
5760	min	Winter	1.449	0.0	434.8	3864
7200	min	Winter	1.241	0.0	464.9	4616
8640	min	Winter	1.093	0.0	491.7	5272
10080	min	Winter	0.982	0.0	515.2	5944

DBFL Consulting Engineers					
Ormond House	Catchment 3 1 in 30 year				
Upper Ormond Quay	Newcastle South,				
Dublin 7	Co.Dublin	Micro			
Date 13/06/2022	Designed by COL	Drainage			
File CATCHMENT 3 1 IN 30 YEA	Checked by COL	niailiade			
Innovyze	Source Control 2020.1				

Model Details

Storage is Online Cover Level (m) 94.400

Tank or Pond Structure

Invert Level (m) 92.600

Depth (m) Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.0	00 2	220.0	0.	700	2	220.0	1.	.400		0.0	2.	100		0.0
0.1	00 2	220.0	0.	800	2	220.0	1.	.500		0.0	2.	200		0.0
0.2	00 2	220.0	0.	900	2	220.0	1.	600		0.0	2.	300		0.0
0.3	00 2	220.0	1.	000	2	220.0	1.	.700		0.0	2.	400		0.0
0.4	00 2	220.0	1.	100	2	220.0	1.	.800		0.0	2.	500		0.0
0.5	00 2	220.0	1.	200		0.0	1.	.900		0.0				
0.6	00 2	220.0	1.	300		0.0	2.	.000		0.0				

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0063-1900-1170-1900 Design Head (m) 1.170 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 63 Invert Level (m) 92.434 75 Minimum Outlet Pipe Diameter (mm) Suggested Manhole Diameter (mm) 1200

Control Points	Head (m) Flow	(1/s)
Design Point (Calculated)	1.170	1.9
Flush-Flo™	0.274	1.7
Kick-Flo®	0.560	1.4
Mean Flow over Head Range	-	1.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Fl	low (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
0.100	1.4	1.200	1.9	3.000	2.9	7.000	4.3
0.200	1.7	1.400	2.1	3.500	3.1	7.500	4.5
0.300	1.7	1.600	2.2	4.000	3.3	8.000	4.6
0.400	1.6	1.800	2.3	4.500	3.5	8.500	4.8
0.500	1.5	2.000	2.4	5.000	3.7	9.000	4.9
0.600	1.4	2.200	2.5	5.500	3.9	9.500	5.0
0.800	1.6	2.400	2.6	6.000	4.0		
1.000	1.8	2.600	2.7	6.500	4.2		

©1982-2020 Innovyze

DBFL Consulting Engineers	Page 1	
Ormond House	Catchment 3, 1 in 100 year	
Upper Ormond Quay	Newcastle, South	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File CATCHMENT 3 1 IN 100 YE	Checked by NCG	Dialilade
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	92.750	0.350	1.5	63.1	O K
30	min	Summer	92.882	0.482	1.5	86.7	O K
60	min	Summer	93.017	0.617	1.5	111.0	O K
120	min	Summer	93.159	0.759	1.5	136.6	O K
180	min	Summer	93.243	0.843	1.5	151.7	O K
240	min	Summer	93.301	0.901	1.6	162.1	O K
360	min	Summer	93.376	0.976	1.6	175.6	O K
480	min	Summer	93.420	1.020	1.7	183.6	O K
600	min	Summer	93.447	1.047	1.7	188.5	O K
720	min	Summer	93.463	1.063	1.7	191.3	O K
960	min	Summer	93.475	1.075	1.7	193.4	O K
1440	min	Summer	93.479	1.079	1.7	194.2	O K
2160	min	Summer	93.463	1.063	1.7	191.4	O K
2880	min	Summer	93.439	1.039	1.7	187.0	O K
4320	min	Summer	93.380	0.980	1.7	176.3	O K
5760	min	Summer	93.315	0.915	1.6	164.7	O K
7200	min	Summer	93.250	0.850	1.6	152.9	O K
8640	min	Summer	93.186	0.786	1.5	141.5	O K
10080	min	Summer	93.125	0.725	1.5	130.4	O K
15	min	Winter	92.794	0.394	1.5	70.8	O K
30	min	Winter	92.942	0.542	1.5	97.5	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	92.775	0.0	64.6	22
30	min	Summer	64.070	0.0	89.3	37
60	min	Summer	41.518	0.0	115.8	66
120	min	Summer	26.230	0.0	146.3	126
180	min	Summer	19.894	0.0	166.4	184
240	min	Summer	16.313	0.0	181.9	244
360	min	Summer	12.304	0.0	205.9	362
480	min	Summer	10.060	0.0	224.4	482
600	min	Summer	8.601	0.0	239.9	602
720	min	Summer	7.565	0.0	249.2	720
960	min	Summer	6.178	0.0	252.5	892
1440	min	Summer	4.642	0.0	248.6	1138
2160	min	Summer	3.483	0.0	349.8	1536
2880	min	Summer	2.838	0.0	380.0	1960
4320	min	Summer	2.123	0.0	426.4	2772
5760	min	Summer	1.727	0.0	462.5	3632
7200	min	Summer	1.472	0.0	492.5	4400
8640	min	Summer	1.291	0.0	518.6	5272
10080	min	Summer	1.156	0.0	541.7	6048
15	min	Winter	92.775	0.0	72.4	22
30	min	Winter	64.070	0.0	100.0	37

©1982-2020 Innovyze

DBFL Consulting Engineers						
Ormond House	Catchment 3, 1 in 100 year					
Upper Ormond Quay	Newcastle, South					
Dublin 7	Co.Dublin	Micro				
Date 13/06/2022	Designed by COL	Drainage				
File CATCHMENT 3 1 IN 100 YE	Checked by NCG	Dialilade				
Innovyze	Source Control 2020.1	•				

Summary of Results for 100 year Return Period (+20%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	93.093	0.693	1.5	124.8	ОК
120	min	Winter	93.256	0.856	1.6	154.1	O K
180	min	Winter	93.353	0.953	1.6	171.6	O K
240	min	Winter	93.421	1.021	1.7	183.9	O K
360	min	Winter	93.513	1.113	1.7	200.1	O K
480	min	Winter	93.785	1.385	1.9	209.7	O K
600	min	Winter	93.809	1.409	1.9	215.8	O K
720	min	Winter	93.823	1.423	1.9	219.8	O K
960	min	Winter	93.837	1.437	2.0	223.6	O K
1440	min	Winter	93.838	1.438	2.0	223.9	O K
2160	min	Winter	93.824	1.424	1.9	219.9	O K
2880	min	Winter	93.797	1.397	1.9	212.6	O K
4320	min	Winter	93.491	1.091	1.7	196.4	O K
5760	min	Winter	93.386	0.986	1.7	177.4	O K
7200	min	Winter	93.282	0.882	1.6	158.8	O K
8640	min	Winter	93.183	0.783	1.5	140.9	O K
10080	min	Winter	93.085	0.685	1.5	123.2	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Winter	41.518	0.0	120 6	66
					129.6	
		Winter	26.230	0.0	163.8	124
180	min	Winter	19.894	0.0	186.4	182
240	min	Winter	16.313	0.0	203.8	240
360	min	Winter	12.304	0.0	230.6	356
480	min	Winter	10.060	0.0	250.3	470
600	min	Winter	8.601	0.0	258.8	584
720	min	Winter	7.565	0.0	261.3	694
960	min	Winter	6.178	0.0	262.7	910
1440	min	Winter	4.642	0.0	263.3	1154
2160	min	Winter	3.483	0.0	391.8	1620
2880	min	Winter	2.838	0.0	425.6	2076
4320	min	Winter	2.123	0.0	463.6	3024
5760	min	Winter	1.727	0.0	518.0	3912
7200	min	Winter	1.472	0.0	551.8	4760
8640	min	Winter	1.291	0.0	580.8	5624
10080	min	Winter	1.156	0.0	606.7	6456

DBFL Consulting Engineers						
Ormond House	Catchment 3, 1 in 100 year					
Upper Ormond Quay	Newcastle, South					
Dublin 7	Co.Dublin	Micro				
Date 13/06/2022	Designed by COL	Drainage				
File CATCHMENT 3 1 IN 100 YE	Checked by NCG	Dialilade				
Innovyze	Source Control 2020.1	1				

Model Details

Storage is Online Cover Level (m) 94.200

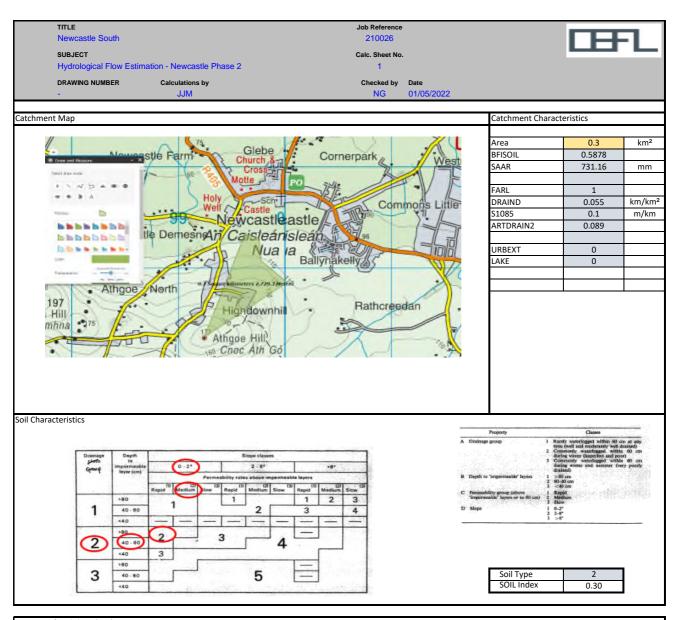
Tank or Pond Structure

Invert Level (m) 92.400

Depth (m)	Area (m²)						
0.000	180.0	0.700	180.0	1.400	280.0	2.100	0.0
0.100		0.800	180.0	1.500	280.0	2.200	0.0
0.200	180.0	0.900	180.0	1.600	280.0	2.300	0.0
0.300	180.0	1.000	180.0	1.700	0.0	2.400	0.0
0.400	180.0	1.100	180.0	1.800	0.0	2.500	0.0
0.500	180.0	1.200	0.0	1.900	0.0		
0.600	180.0	1.300	0.0	2.000	0.0		

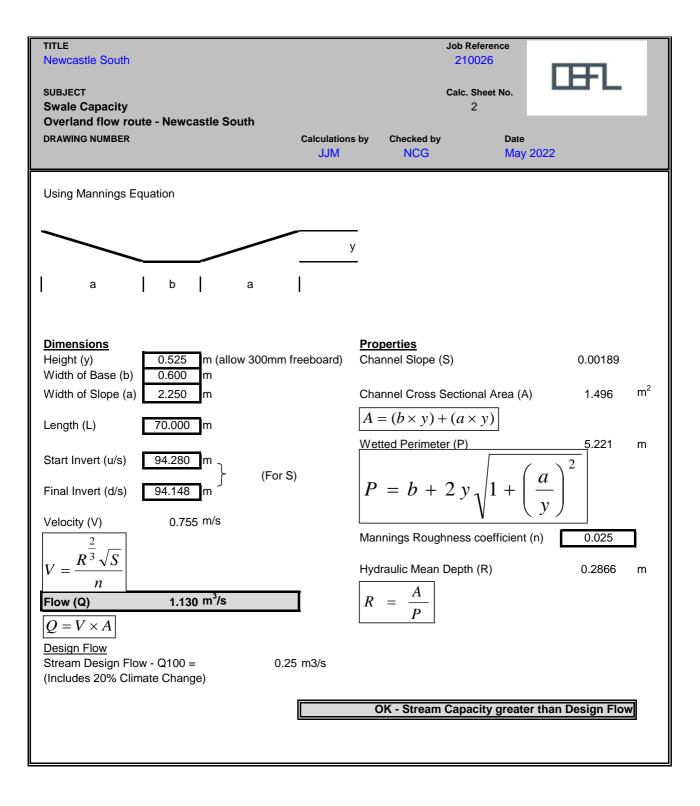
Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0061-1910-1390-1910 Design Head (m) 1.390 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 61 Invert Level (m) 92.369 Minimum Outlet Pipe Diameter (mm) 75 Suggested Manhole Diameter (mm) 1200


Control Points	Head (m) Flow	(1/s)
Design Point (Calculated)	1.390	1.9
Flush-Flo™	0.269	1.5
Kick-Flo®	0.542	1.2
Mean Flow over Head Range	-	1.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(1/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	1.3	1.200	1.8	3.000	2.7	7.000	4.0
0.200	1.5	1.400	1.9	3.500	2.9	7.500	4.2
0.300	1.5	1.600	2.0	4.000	3.1	8.000	4.3
0.400	1.5	1.800	2.1	4.500	3.3	8.500	4.4
0.500	1.3	2.000	2.3	5.000	3.4	9.000	4.5
0.600	1.3	2.200	2.4	5.500	3.6	9.500	4.7
0.800	1.5	2.400	2.4	6.000	3.7		
1.000	1.6	2.600	2.5	6.500	3.9		


©1982-2020 Innovyze

Appendix D
SWALE AND CULVERT
CALCULATIONS

Q100	0.21
Q1000	0.27

Appendix E

FOUL SEWER NETWORK CALCULATIONS

DBFL Consulting Engineers		Page 1
Ormond House	Network Draining by gravity	
Upper Ormond Quay	Newcastle, South,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

FOUL SEWERAGE DESIGN

Design Criteria for FS_1

Pipe Sizes standard Manhole Sizes standard

Industrial Flow (1/s/ha) 0.00 Industrial Peak Flow Factor Calculation Method BS 8301 Frequency Factor 0.00 Domestic (l/s/ha) 0.00 Domestic Peak Flow Factor 6.00 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 0.75 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for FS_1

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)		ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	20.072 48.808			0.000	0.0 168.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	1
2.000	45.945	0.765	60.1	0.000	84.0	0.0	1.500	0	150	Pipe/Conduit	ð
3.000	12.896	0.217	59.4	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	ð
2.001	19.074	0.517	36.9	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	•
1.002 1.003	40.768 69.991			0.000	0.0 168.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	•

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	-	P.Vel (m/s)		Cap (1/s)	Flow (1/s)
	99.742	0.000	0.0	0.0	0.0	0	0.00	1.13	20.0	0.0
1.001	99.409	0.000	0.0	168.0	0.0	47	0.93	1.16	20.6	4.4
2.000	99.908	0.000	0.0	84.0	0.0	44	0.87	1.13	20.0	3.8
3.000	99.285	0.000	0.0	0.0	0.0	0	0.00	1.49	59.3	0.0
2.001	99.068	0.000	0.0	84.0	0.0	39	1.03	1.45	25.5	3.8
1.002	98.476	0.000	0.0	252.0	0.0	44	0.92	1.52	60.4	5.0
1.003	97.763	0.000	0.0	420.0	0.0	60	0.68	0.94	37.2	5.8
	-	-	©19	82-2020	Innovy	ze				

DBFL Consulting Engineers		Page 2
Ormond House	Network Draining by gravity	
Upper Ormond Quay	Newcastle, South,	
Dublin 7	Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Network Design Table for FS 1

PN Length Fall Slope Area Units Base k HYD DIA Section Type Auto (m) (1:X) (ha) Flow (1/s) (mm) SECT (mm) (m) Design

1.004 52.037 0.347 150.0 0.000 168.0

0.0 1.500 o 225 Pipe/Conduit 💣

Network Results Table

PN US/IL Σ Area Σ Base Σ Units Add Flow P.Dep P.Vel Vel Cap Flow (m) (ha) Flow (1/s) (1/s) (mm) (m/s) (m/s) (1/s) (1/s)

1.004 97.297 0.000 0.0 588.0 0.0 64 0.70 0.94 37.2 6.5

Free Flowing Outfall Details for FS 1

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.004 F28-1 100.400 96.950 0.000 0 0

DBFL Consulting Engineers		Page 1
Ormond House	Network going to pump station	
Upper Ormond Quay	Sized for Future units	
Dublin 7	Newcastle South, Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

FOUL SEWERAGE DESIGN

Design Criteria for FS_2

Pipe Sizes standard Manhole Sizes standard

Industrial Flow (1/s/ha) 0.00 Industrial Peak Flow Factor Calculation Method BS 8301 Frequency Factor 0.00 Domestic (1/s/ha) 0.00 Domestic Peak Flow Factor 6.00 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 0.75 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for FS 2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
6.003 6.004 6.005	29.209 56.156 56.156 10.654 3.730 53.024 53.024	0.936 0.375 0.071 0.024 0.354	60.0 149.7 150.1 155.4 149.8	0.000 0.000 0.000	56.0 252.0 0.0 56.0 0.0 56.0	0.0 0.0 0.0 0.0	1.500 1.500 1.500 1.500 1.500 1.500	0 0 0 0 0	225 225 225 225 225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	4
7.001	32.089 6.994 65.721	0.117	59.8	0.000 0.000 0.000	42.0 0.0 98.0	0.0	1.500 1.500 1.500	0 0	150	Pipe/Conduit Pipe/Conduit Pipe/Conduit	0 0

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
	• •	, ,								, , ,
6.000	93.570	0.000	0.0	56.0	0.0	37	0.81	1.48	59.0	3.5
6.001	93.083	0.000	0.0	308.0	0.0	45	0.92	1.48	59.0	5.3
6.002	92.147	0.000	0.0	308.0	0.0	57	0.66	0.94	37.3	5.3
6.003	91.772	0.000	0.0	364.0	0.0	59	0.67	0.94	37.2	5.5
6.004	91.701	0.000	0.0	364.0	0.0	59	0.66	0.92	36.6	5.5
6.005	91.677	0.000	0.0	420.0	0.0	60	0.68	0.94	37.3	5.8
6.006	91.323	0.000	0.0	420.0	0.0	55	0.77	1.11	44.3	5.8
7.000	93.467	0.000	0.0	42.0	0.0	41	0.83	1.13	20.0	3.3
7.001	92.859	0.000	0.0	42.0	0.0	41	0.83	1.13	20.0	3.3
7.002	92.742	0.000	0.0	140.0	0.0	41	0.85	1.47	58.4	4.3
			©19	82-2020) Innovy	ze				

DBFL Consulting Engineers		Page 2
Ormond House	Network going to pump station	
Upper Ormond Quay	Sized for Future units	
Dublin 7	Newcastle South, Co.Dublin	Micro
Date 13/06/2022	Dogianod by COI	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Network Design Table for FS 2

PN	Length (m)	Fall	Slope (1:X)	Area (ha)	Units	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	63.293 61.989				56.0 112.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	•
8.000	78.888	1.389	56.8	0.000	112.0	0.0	1.500	0	150	Pipe/Conduit	a
9.000	43.948	0.733	60.0	0.000	1148.0	0.0	1.500	0	150	Pipe/Conduit	•
8.001	32.581	0.543	60.0	0.000	0.0	0.0	1.500	0	150	Pipe/Conduit	♂
10.000	50.068	0.908	55.1	0.000	56.0	0.0	1.500	0	150	Pipe/Conduit	♂
8.002	64.754	1.079	60.0	0.000	112.0	0.0	1.500	0	150	Pipe/Conduit	♂
11.001	20.024 11.937 46.095	0.260	45.9	0.000	56.0 0.0 140.0	0.0	1.500 1.500 1.500	0	150	Pipe/Conduit Pipe/Conduit Pipe/Conduit	1
11.003	20.560	0.343	59.9	0.000	0.0		1.500	0		Pipe/Conduit	•
8.003	63.246	1.027	61.6	0.000	28.0	0.0	1.500	0	225	Pipe/Conduit	•
	10.369 15.776			0.000	14.0 14.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	0

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	-	P.Vel (m/s)		Cap (1/s)	Flow (1/s)	
	91.667 91.327	0.000	0.0	196.0 308.0	0.0	57 54	0.59 0.71	0.84	33.4 41.1	4.6 5.3	
8.000	97.709	0.000	0.0	112.0	0.0	45	0.90	1.16	20.6	4.0	
9.000	98.275	0.000	0.0	1148.0	0.0	69	1.09	1.13	20.0	8.6	
8.001	96.320	0.000	0.0	1260.0	0.0	70	1.10	1.13	20.0	8.9	
10.000	96.685	0.000	0.0	56.0	0.0	41	0.87	1.18	20.9	3.5	
8.002	95.777	0.000	0.0	1428.0	0.0	73	1.12	1.13	20.0	9.5	
11.000	96.415	0.000	0.0	56.0	0.0	42	0.84	1.13	20.0	3.5	
11.001	96.082	0.000	0.0	56.0	0.0	40	0.93	1.30	22.9	3.5	
11.002		0.000	0.0	196.0	0.0	50	0.89	1.09	19.2	4.6	
11.003		0.000	0.0	196.0	0.0	43	0.88	1.48	59.0	4.6	
8.003	94.623	0.000	0.0	1652.0	0.0	64	1.10	1.46	58.2	10.2	
12.000	96.067	0.000	0.0	14.0	0.0	36	0.77	1.13	20.0	2.6	
12.001		0.000	0.0	28.0	0.0	46	0.65	0.84	14.8	3.0	
			©19	82-2020	Innovyz	ze					_

DBFL Consulting Engineers		Page 3
Ormond House	Network going to pump station	
Upper Ormond Quay	Sized for Future units	
Dublin 7	Newcastle South, Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Network Design Table for FS 2

PN	Length (m)	Fall	Slope (1:X)	Area (ha)	Units	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
12.002	14.403	0.240	60.0	0.000	28.0	0.0	1.500	0	150	Pipe/Conduit	•
	12.900 48.561			0.000	28.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	0
12.004 12.005 12.006	13.018 5.163 21.561 12.516 10.026	0.036 0.143 0.084	143.4 150.8 149.0	0.000 0.000 0.000	42.0 0.0 0.0 14.0 28.0	0.0 0.0 0.0	1.500 1.500 1.500 1.500	0 0 0	225 225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	• • •
	59.862 16.630				98.0		1.500	0		Pipe/Conduit Pipe/Conduit	ě
	17.992 40.034				0.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	0
	18.580 68.004			0.000	0.0		1.500	0		Pipe/Conduit Pipe/Conduit	•
14.001 14.002	20.506 41.479 21.239	0.683 0.693	30.0 59.9	0.000 0.000 0.000	0.0 483.0	0.0	1.500 1.500 1.500	0	225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit	⊕ ⊕ ⊕

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)			
12.002	95.749	0.000	0.0	56.0	0.0	42	0.85	1.13	20.0	3.5			
13.000 13.001		0.000	0.0	28.0 28.0	0.0	39 39	0.81	1.14 1.13	20.2	3.0			
12.003		0.000	0.0	126.0	0.0	51	0.61	0.93	36.8	4.1			
12.004 12.005		0.000	0.0	126.0 126.0	0.0	50 51	0.63	0.96	38.1 37.1	4.1 4.1			
12.005		0.000	0.0	140.0	0.0	51	0.62	0.93	37.1	4.1			
12.007		0.000	0.0	168.0	0.0	57	0.57	0.81	32.2	4.4			
12.008	94.361	0.000	0.0	266.0	0.0	60	0.59	0.81	32.2	5.0			
8.004	93.596	0.000	0.0	1918.0	0.0	91	0.73	0.81	32.2	11.1			
8.005	93.513	0.000	0.0	1918.0	0.0	91	0.74	0.81	32.4	11.1			
8.006	93.422	0.000	0.0	1918.0	0.0	91	0.73	0.81	32.2	11.1			
6.007	90.824	0.000	0.0	2646.0	0.0	101	0.77	0.81	32.2	13.3			
14.000	96.990	0.000	0.0	966.0	0.0	47	1.32	2.10	83.5	7.9			
14.001	94.723	0.000	0.0	966.0	0.0	47	1.32	2.10	83.5	7.9			
14.002 94.040 0.000 0.0 1449.0 0.0 61 1.09 1.49 59.1 9.6													
14.003	14.003 93.347 0.000 0.0 1932.0 0.0 66 1.14 1.48 59.0 11.1												
			©19	82-2020	Innovyz	ze							

DBFL Consulting Engineers		Page 4
Ormond House	Network going to pump station	
Upper Ormond Quay	Sized for Future units	
Dublin 7	Newcastle South, Co.Dublin	Micro
Date 13/06/2022	Designed by COL	Drainage
File WINDES MODEL CAPACITY C	Checked by NCG	Dialilade
Innovyze	Network 2020.1	

Network Design Table for FS_2

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Units	ase (1/s)				Section Type	Auto Design
14.004	30.174	0.503	60.0	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	0
15.000	25.089	0.167	150.2	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	•
14.005	44.549	0.743	60.0	0.000	350.0	0.0	1.500	0	225	Pipe/Conduit	0
6.008	13.921	0.078	178.5	0.000	0.0	0.0	1.500	0	225	Pipe/Conduit	<u> </u>

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)		Add Flow (1/s)	-	P.Vel (m/s)		-	
14.004	92.993	0.000	0.0	1932.0	0.0	66	1.14	1.48	59.0	11.1
15.000	92.657	0.000	0.0	0.0	0.0	0	0.00	0.94	37.2	0.0
14.005	92.490	0.000	0.0	2282.0	0.0	69	1.17	1.48	59.0	12.2
6.008	90.731	0.000	0.0	4928.0	0.0	125	0.90	0.86	34.1	20.4

Free Flowing Outfall Details for FS 2

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
6.008	FO	94.800	90.653	0.000	0	0

Appendix F PUMPING STATION CALCULATIONS

TITLE

Newcastle Phase 2

Job Reference

Calc. Sheet No.

Checked by

210026

1

SUBJECT

Foul Pumping Station and

Rising Main Calculations PS02 (SDCC)

DRAWING NUMBER Calculations by 210026

COL DJR

PUMP REQUIREMENTS

Development Type	No	Occupancy	Population	Consumption (I/head/day)	DWF (m ³ /d ay)
Residential Units	352	2.7	950	150	143

Development Type	Area (sqm)	Occupancy (m² per person)	Population	Consumption (I/head/day)	DWF (m ³ /d ay)
Retail	0	18	0	50	0
Employment	0	25	0	100	0
Community	0	5	0	40	0
School	0	20	0	90	0

DWF (Excluding Infiltration) = 142.56 m³/d

Infiltration I = 14.26 m³/d 10% of DWF IW COP

DWF = m³/d 156.82

PE = 1045 1200 say

Pass forward flow $(2.5 \times DWF) = 392.04 \text{ m}^3/\text{d}$ IW-TEC-800-01

> Pump Design Flow = 16.34 m³/hr Based on 24 hour Day Pump Design Flow = Based on 24 hour Day 4.54

RISING MAIN

Pipe Ks = 0.15 mm

Rising main diameter = (160mm OD dia. HDPE, SDR 17) mm

Minimum velocity = 0.75 (For self cleansing)

Chosen pumping rate = OK > minimum flow rate

Minimum flow rate for self cleaning velocity = 5.89 l/s

> Velocity for pumping rate of 6 l/s = 0.764 m/s

TITLE

Newcastle Phase 2

Job Reference

210026

SUBJECT

Foul Pumping Station and

Rising Main Calculations PS02 (SDCC)

1

Calc. Sheet No.

DJR

Checked by

Rising Main Head

DRAWING NUMBER

210026

Cover Level at PS = 94.50

Pump Invert Level =

Incoming Sewer = 51.4

91.3

Outfall Invert Level = 97.45

Static Lift = 9.04

Length of rising main =

Friction Losses

Calculations by

COL

3.26 (1m in 138m) =

Valve Losses = 1.00

Pump Station Losses =

Total Losses = 14.30 m say 15m

Wet Well Size

Assume 1m depth in wet well to minimise depth

IW - no more than 10 starts per hour = pump on every 6 minutes

Conservative = 10 minutes

Assume depth 1.00 m

 m^3 Volume in 10 minutes (DWF) = 0.91

Diameter required: 1.07 m

Septicity of Rising Main & Wet Well

Length of rising main = 450 m

 m^3 Volume of rising main = 3.53

Volume of wet well between cut in/cut out = 0.91 m^3

> m³ day Total daily flow = 156.82

Time interval between clearing of main & wet well = 0.7 hours

0.7hrs < 6.0hrs max retention time septicity OK (IW < 6 hours)

Emergency S	Storage	Storage	(based on PE)	
0 to 250	24 hour	102	,	
250 to 333	18 hour	25		
334 to 1667	12 hour	13		
1668-3333	10 hour			
				note based on 352 units (tank
				has been sized to store a 140
Total:		140	m^3	m3 for future units)

Appendix G QBAR CALCULATIONS

PROJECT

Newcastle phase 2

SUBJECT

Surface Water Calculations Allowable Outflow

Calculations by Checked by
COL NCG

Calc. Sheet No.

23-Apr-22

JOB REF.

p210026

PERMISSIBLE SURFACE WATER DISCHARGE CALCULATIONS

Site Area

Drawing ref.

210026-

What is the overall site area?

11.63 Hectares (ha) Site is Less than 50 Hectares

(Area of site within catchment of new drainage networks excludes open space areas not within new drainage networks) Shown on drawing 210026-DBFL-CS-SP-DR-C-1202

Pre-Development Catchment Soil Characteristics

Are there different soil types present on the pre-developed site?

71 1 1		<u> </u>
Catchment This refers to the entire site area	1	
Area	11.63	Hectares (ha)
Drainage Group	1	Class
Depth to Impermeable Layers	1	Class
Permeability Group above Impermeable Layers	2	Class
Slope ⁽⁰⁾	1	Class
SOIL Type	2	From FSR Table
SOIL Index	0.30	

SOIL	SOIL Value	SPR
1	0.15	0.10
2	0.30	0.30
3	0.40	0.37
4	0.45	0.47
5	0.50	0.53

Site SOIL Index Value

Site SPR Value

0.30

Post-Development Catchment Characteristics

Is the development divided into sub-catchments?

How many sub-catchments?

Yes 4

0.30

No

Catchment 2A

What is the overall site area for Catchment 2A?

3.79 Hectares (ha)

Catchment 2A	Area (m²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	0.0	1.00	0.0
Roofs - Type 2 (Draining to SUDS features)	5745.0	0.80	4596.0
Green Roofs		0.80	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	8097.0	1.00	8097.0
Roads and Footpaths - Type 2 (Draining to Suds features)	2296.0	0.80	1836.8
Paved Areas		1.00	0.0
Permeable Paving	3008.0	0.75	2256.0
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	3824.0	0.15	573.6
Grassed Areas (Enclosed)	14940.0	0.00	0.0

Include Public Open Space in Effective Catchment Area 1A?

No

Catchment 2A - Effective Catchment Area

17359.4 m²

Catchment 2A - Effective Catchment Runoff Coefficient

0.46

Catchment 2F

What is the overall site area for catchment?

0.82 Hectares (ha)

Catchment 2A	Area (m²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	0.0	1.00	0.0
Roofs - Type 2 (Draining to SUDS features)	1497.0	0.80	1197.6
Green Roofs		0.80	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	965.0	1.00	965.0
Roads and Footpaths - Type 2 (Draining to Suds features)	194.0	0.80	155.2
Paved Areas		1.00	0.0
Permeable Paving	265.0	0.75	198.8
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	2230.0	0.15	334.5
Grassed Areas (Enclosed)	3090.0	0.00	0.0

Include Public Open Space in Effective Catchment Area?

No

Effective Catchment Area

Effective Catchment Runoff Coefficient

0.35

Catchment 2D

What is the overall site area for Catchment 2D?

1.14 Hectares (ha)

Catchment 2D	Area (m ²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	0.0	1.00	0.0
Roofs - Type 2 (Draining to SUDS features)	1650.0	0.80	1320.0
Green Roofs	0.0	0.50	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	1837.0	1.00	1837.0
Roads and Footpaths - Type 2 (Draining to Suds features)	220.0	0.80	176.0
Paved Areas		1.00	0.0
Permeable Paving	850.0	0.75	637.5
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	1025.0	0.15	153.8
Grassed Areas (Enclosed)	5810.0	0.00	0.0
Public Open Space		0.30	0.0

Include Public Open Space in Effective Catchment Area 1B?

No

Catchment 2D - Effective Catchment Area

4124.3 m²

Catchment 2D - Effective Catchment Runoff Coefficient

0.36

Catchment 3

What is the overall site area for Catchment 3?

1.02 Hectares (ha)

Catchment 3	Area (m²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	0.0	1.00	0.0
Roofs - Type 2 (Draining to SUDS features)	1645.0	0.80	1316.0
Green Roofs		0.50	0.0
Roads and Footpaths - Type 1 (Draining to gullies)	2120.0	1.00	2120.0
Roads and Footpaths - Type 2 (Draining to Suds features)	0.0	0.80	0.0
Paved Areas		1.00	0.0
Permeable Paving	709.0	0.75	531.8
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	1027.0	0.15	154.1
Grassed Areas (Enclosed)	4719.0	0.00	0.0
Public Open Space		0.30	0.0

Include Public Open Space in Effective Catchment Area 1B?

No

Catchment 3 - Effective Catchment Area

4121.8 m²

Catchment 3 - Effective Catchment Runoff Coefficient

0.40

Catchment 2E

What is the overall site area for Catchment 2E?

1.67 Hectares (ha)

Catchment 1C	Area (m²)	Runoff Coeff.	Effective Area (m ²)
Roofs - Type 1 (Draining to gullies)	1260.0	1.00	1260.0
Roofs - Type 2 (Draining to SUDS features)	0.0	0.80	0.0
Green Roofs	1260.0	0.75	945.0
Roads and Footpaths - Type 1 (Draining to gullies)	2862.0	1.00	2862.0
Roads and Footpaths - Type 2 (Draining to Suds features)	0.0	0.80	0.0
Paved Areas		1.00	0.0
Permeable Paving	2139.0	0.75	1604.3
Bioretention Areas		1.00	0.0
Grassed Areas (Open)	3298.0	0.15	494.7
Grassed Areas (Enclosed)	5899.0	0.00	0.0
Public Open Space		0.30	0.0

Include Public Open Space in Effective Catchment Area 1B?

No

Catchment 2E - Effective Catchment Area

7166.0 m²

Catchment 2E - Effective Catchment Runoff Coefficient

0.43

Catchment 2B (Future Residential Site) What is the overall site area for Catchment 2B? Catchment 2B will be attenuated within its own Catchment	2.43 Hectares (ha) 5.48
Catchment 2C (Future Residential Site) What is the overall site area for Catchment 2C? Catchment 2C will be attenuated within its own Catchment	0.73 Hectares (ha) 1.55
What is the Standard Average Annual Rainfall (SAAR)? Is the overall site area less than 50 hectares?	795.0 mm From Met Eireann, Co-ordinates 299000, 235000 Yes
°QBAR _{Rural} calculated for 50 ha and linearly interpolated for area of site	24.60 Litres/sec
⁷ Site Discharge =	24.60 Litres/sec

Outflow for Each Sub-Catchment

Sub - Catchment	Area (m²)	Calculated Allowable Outflow (I/s)	
2A	37910	8.02	
2F	8242	1.74	
2D	11392	2.41	
3	10220	2.16	
2E	16718	3.54	
2B	24343	5.15	
2C	7323	1.55	
	0	0.00	
	0	0.00	
		24.57	

Notes and Formulae

- 1. SOIL index value calculated from Flood Studies Report The Classification of Soils from Winter Rainfall Acceptance Rate (Table 4.5).
- 2. SPR value calculated from GDSDS Table 6.7.
- 3. Rainfall depth for 100 year return period, 6 hour duration with additional 10% for climate change.
- $4. \ Long-term\ storage\ Vol_{xs}\ (m^3) = Rainfall. Area. 10. [(PIMP/100)(0.8.\alpha) + (1-PIMP/100)(\beta.SPR)-SPR].\ (GDSDS\ Section\ 6.7.3).$
 - $Where \ long-term \ storage \ cannot \ be \ provided \ on-site \ due \ to \ ground \ conditions, \ Total \ Permissible \ Outflow \ is \ to \ be \ kept \ to \ QBAR \ {\it (Rurall)-total \ Permissible \ Outflow)} \ description \$
- $5.\ Total\ Permissible\ Outflow\ -\ QBAR\ _{(Rural)}\ calculated\ in\ accordance\ with\ GDSDS\ -\ Regional\ Drainage\ Policies$
 - $(Volume\ 2\ -\ Chapter\ 6), i.e.\ QBAR(m3/s)=0.00108x(Area)^{0.89}(SAAR)^{1.17}(SOIL)^{2.17}\ -\ For\ catchments\ greater\ than\ 50\ hectares\ in\ area.\ Flow\ rates\ are\ linearly\ interpolated\ for\ areas\ samller\ than\ 50hectares.$
- 6. Where Total Permissible Outflow is less than 2.0l/s and not achievable, use 2.0 l/s or closest value possible.
- 7. QBAR multiplied by growth factors of 0.85 for 1 year, 2.1 for 30 year and 2.6 for 100 year return period events, from GDSDS Figure C2.

Appendix H
DMURS QUALITY AUDIT

BRUTON CONSULTING ENGINEERS

Title: DMURS QUALITY AUDIT

For;

Proposed Strategic Housing Development, Newcastle Phase

2, on Behalf of Cairn Homes.

Client: **DBFL Consulting Engineers.**

Date: **May 2022**

Report reference: 1491R01

VERSION: FINAL (May 31-5-2022)

Prepared By:

Bruton Consulting Engineers Ltd

Glaspistol Tel: 041 9881456

Clogherhead Mob: 086 8067075

Drogheda E: admin@brutonceng.ie

Co. Louth. W: www.brutonceng.ie

CONTENTS SHEET

Contents

1.0	Intro	oduction	2
2.0	Back	kground	3
3.0	Desi	gn Street Audit	4
4.0	Stage 1-	2 Road Safety Audit	7
	4.1	Issue	7
٥.0 ر	Walking	, Audit	8
	5.1	Issue	8
	5.2	Issue	8
	5.3	Issue	9
6.0	Cycling	Audit	11
	6.1	Issue	11
	6.2	Issue	12
	6.3	Issue	12
7.0	Accessik	pility Audit	13
	7.1	Issue	13
	7.2	Issue	14
	7.3	Issue	14
	7.4	Issue	15
	7.5	Issue	16
	7.6	Issue	17
	7.7	Issue	17
8.0	Audit St	atement	19
Арр	endix A	– Issue Location Map	20
Арр	endix B.	·	21
agA	endix C.		22

1.0 Introduction

This report was prepared in response to a request from Mr. Noel Gorman, DBFL Consulting Engineers, for a DMURS Quality Audit of the proposed Newcastle Phase 2 Strategic Housing Development.

The Quality Audit consists of the following elements.

- A Street Design Audit
- A Stage 1-2 Road Safety Audit
- A Pedestrian/Walking Audit
- A Cycling Audit
- An Accessibility Audit.

These audits consist of the portion of Quality Audits carried out independent of the Design Team.

The Quality Audit has been carried out in accordance with the guidance in the Design Manual for Urban Roads and Streets (DMURS), produced by Department of Transport Tourism and Sport in March 2013 and as updated in June 2019.

The Road Safety Audit has been carried out in accordance with TII Publication GE-DTY-01024, dated December 2017.

The Audit Team comprised of;

Team Leader: Norman Bruton, BE CEng FIEI, Cert Comp RSA.

TII Road safety Auditor approval number: NB 168446

Team Member: Sayed Ahmad Saeed, BEng Tech, BEng (Hons), MEng, MIEI

TII Road Safety Auditor approval number: SS 3419515

The Quality Audit comprised an examination of the drawings provided and a site visit by the Audit Team, together, on the 17th of May 2022.

The weather at the time of the daytime site visit was dry and the road surface was also dry.

The problems raised in this Quality Audit require responses from the Design Team. A feedback form subdivided into the various sub-audits has been provided. Issues identified may belong to more than one sub audit however the primary safety concern has dictated which section each has been assigned to.

A location map showing where each problem occurs is provided in **Appendix A.**

A list of the documents provided to the Audit Team is provided in Appendix B.

The feedback form is provided in Appendix C.

2.0 Background

It is proposed to construct phase 2 of a large residential development in Newcastle South. This phase consists of a proposed signalised junction on the Athgoe Road and a connection to Phase 1 (Graydon ABP 305343-19) at Newcastle Boulevard, which was under construction at the time of the site visit. There is also a proposed tie in with St. Finian's Way which links to the R405, Main Street. There is a possible future connections to the East and South for subsequent phases.

The speed limit on the Athgoe Road changes from 50km/hr to 60km/hr just north of the proposed signalised junction.

The site location is shown below.

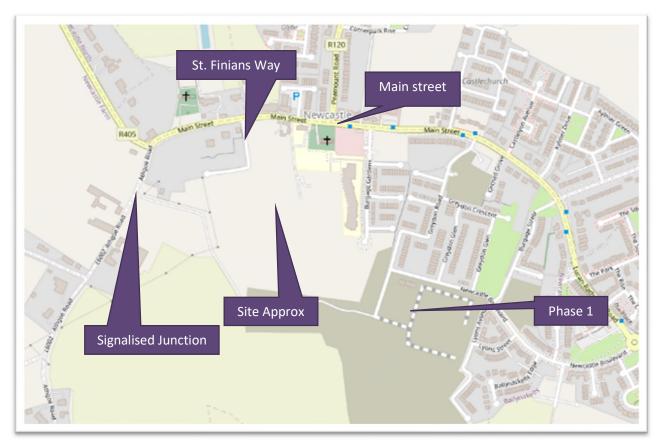


Image courtesy of openstreetmap.org

3.0 Design Street Audit.

The DMURS Street Design Audit is primarily concerned with four major aspects of street design:

- Connectivity
- Self-Regulating Street Environment
- Pedestrian and Cycling Environment
- Visual Quality

The Street Design Audit taken into consideration the issues and DMURS references as outlined in the template provided at DMURS.ie. The tables below summarises the issues considered along with evidence of these issues being addressed in the scheme design.

Any areas for improvement have been raised in the four subsequent sections of this report and in the feedback form in Appendix C.

Key Issues	Key DMURS Reference.	Proposed Scheme
Strategic routes/major desire lines been identified and are clearly incorporated into the design.	3.1 – Integrated Street Network 3.2.1 – Movement Function 3.3.1 – Street layouts 3.3.4 - Wayfinding	Desire lines to Phase 1, Athgoe Road and Main Street identified and catered for.
Multiple points of access are provided to the site/place, in particular for sustainable modes.	3.3.1 – Street Layouts 3.3.3 – Retrofitting ¹	Three access points provided with possible future additional access points.
Accessibility throughout the site is maximised for pedestrians and cyclists, ensuring route choice.	3.3.1 – Street Layouts 3.3.2 – Block Sizes 3.4.1 – Vehicle Permeability	Dedicated pedestrian facilities throughout. Dedicated cycle facilities on higher level streets.
Through movements by private vehicles on local streets are discouraged by an appropriate level of traffic calming measures.	3.2.1 – Movement Function 3.2.3 – Place Context 3.4.1 – Vehicle Permeability	Raised tables provided at junctions and sinusoidal alignment to traffic calm, short cuts or rat running discouraged.

Key Issues	Key DMURS Reference.	Proposed Scheme
A suitable range of design speeds have been applied with regard to context and function.	3.2.1 – Movement Function. 3.2.3 – Place Context. 4.1.1 – A Balanced Approach to Speed	Self-regulating speeds, Homezones in cul-de- sacs.
The street environment will facilitate the creation of a traffic clamed environment via the use of 'softer' or passive measures	4.2.1 – Building Height and Street Width 4.2.2 – Street Trees 4.2.3 – Active Street Edges 4.2.4 – Signage and Line Marking 4.2.7 – Planting 4.4.2 – Carriageway Surfaces 4.4.9 - On-Street Parking Advice Note 1 – Transitions and Gateways	On street parking
A suitable range of design standards/measures have been applied that are consistent with the applied design speeds.	4.4.1 - Carriageway Widths 4.4.4 - Forward Visibility 4.4.5 - Visibility Splays 4.4.6 - Alignment and curvature 4.4.7 - Horizontal and Vertical Deflections Advice Note 1 - Transitions and Gateways	Visibility splays provided, Carriageway widths vary, Both horizontal and vertical deflection provided.

Key Issues	Key DMURS Reference.	Proposed Scheme
The built environment contributes to the creation of a safe and comfortable pedestrian environment.	4.2.1 – Building Height and Street Width 4.2.3 – Active Street Edges 4.2.5 – Street Furniture 4.4.9 - On-Street parking	Footpath provision.

Junctions been designed to ensure the needs of pedestrians and cyclists are prioritised	4.3.2 - Pedestrian Crossings 4.3.3 – Corner Radii 4.4.3 - Junction Design 4.4.7 - Horizontal and Vertical Deflections	Tight radii, Vertical deflection, pedestrian crossings provided.
Footpaths are continuous and wide enough to cater for the anticipated number of pedestrian movements.	3.2.1 – Movement Function. 3.2.3 – Place Context. 4.2.5 – Street Furniture 4.3.1 - Footways, Verges and Strips 4.3.2 - Pedestrian Crossings	Continuous footpaths

Key Issues	Key DMURS Reference.	Proposed Scheme
The particular needs of visually and mobility impaired users been identified and incorporated in the design.	4.2.5 - Street Furniture 4.3.1 - Footways, Verges and Strips 4.2.5 - Street Furniture 4.3.2 - Pedestrian Crossings 4.3.4 - Pedestrianised and Shared Surfaces	Tactile paving and dropped kerbs provided.
Cycling facilities will cater for cyclists of all ages and abilities.	3.2.1 – Movement Function. 3.2.3 – Place Context. 4.3.5 - Cycle facilities.	Both dedicated and shared use provided.

4.0 Stage 1-2 Road Safety Audit

4.1 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

ISSUE

There is a risk that the speed limit change signs will not be obvious to drivers with the provision of the new signalised junction on Athgoe Road. This could lead to excessive speeds where pedestrians are crossing and onto the severe bend at the Celbridge Road junction.

RECOMMENDATION

It is recommended that that the speed limit signs be located where they can be seen by approaching drivers. At the next speed limit review the 50km/hr zone may be extended beyond the signalised junction.

5.0 Walking Audit

5.1 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

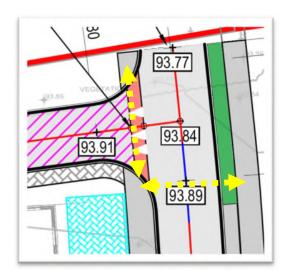
ISSUE

There will be a pedestrian desire line to cross the carriageway at the western tie-in to St. Finian's Way.

RECOMMENDATION

It is recommended that an uncontrolled pedestrian be provided to match the desire line with dropped kerbs and tactile paving.

5.2 Issue


LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

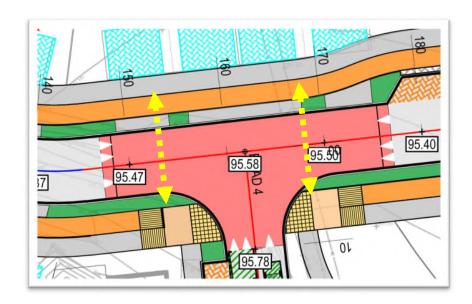
ISSUE

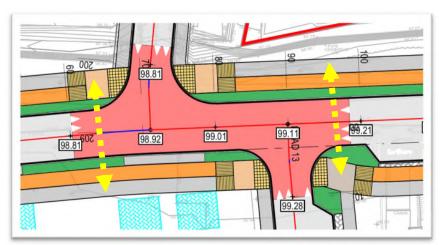
There will be pedestrian desire lines to cross the carriageway at the eastern tie-in to St. Finian's Way.

RECOMMENDATION

It is recommended that Dropped kerbs and tactile paving be provided. It is also recommended that the crossing area does not coincide with the taper of the raised table as it could lead to instability for some mobility impaired pedestrians.

5.3 Issue


LOCATION


Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, Pedestrian crossing facilities at junctions.

ISSUE

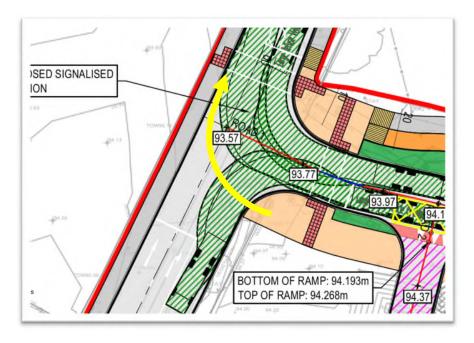
There will be pedestrian desire lines in all directions at the internal junctions. If the desire lines are not catered for this could lead to trips and falls at the kerb locations.

Examples only

RECOMMENDATION

It is recommended that uncontrolled pedestrian crossings be provided to match the desire lines with dropped kerbs and tactile paving. The presence of tactile paving and waiting areas for pedestrians to cross should be avoided at the rear of perpendicular parking spaces as drivers may not be able to see small children in their mirrors and vehicular forces can break tactile paving creating a trip hazard.

6.0 Cycling Audit


6.1 Issue

LOCATION

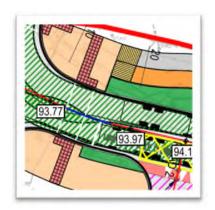
Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

ISSUE

There are no facilities for cyclists to turn right when they exit the proposed development at the Athgoe signalised junction.

RECOMMENDATION

It is recommended that a signalised pedestrian/cyclist crossing be provided on the southern side of the junction.


6.2 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

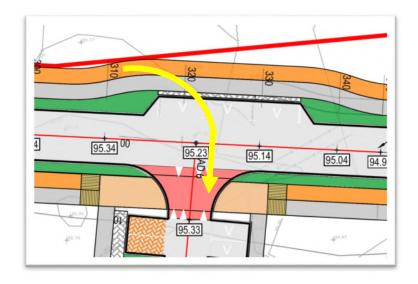
ISSUE

The signalised pedestrian crossing on the development arm of the Athgoe junction will have to cater for cyclists as well as pedestrians. There may not be enough width to cater for both leading to collisions.

RECOMMENDATION

It is recommended that a toucan crossing of suitable width be provided.

6.3 Issue


LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, End of Road 1.

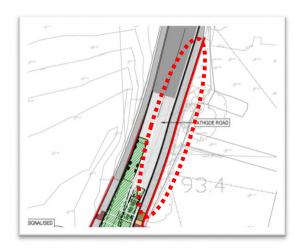
ISSUE

There is no provision for cyclists on the cycle track on the northern side of Road 1 to access Road 6.

RECOMMENDATION

It is recommended that a crossing facility for both cyclists and pedestrians be provided.

7.0 Accessibility Audit


7.1 Issue

LOCATION

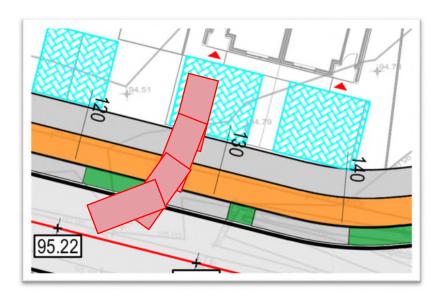
Drawing 210026-DBFL-RD-SP-DR-C-1101 P02

ISSUE

It is proposed to make the footpath continuous along Athgoe Road with the existing footpath. There are two access points along that section of infill path.

RECOMMENDATION

It is recommended that 25mm high kerbs be provided at the access points.


7.2 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, General issue with perpendicular car parking spaces behind the cycle tracks and footpaths.

ISSUE

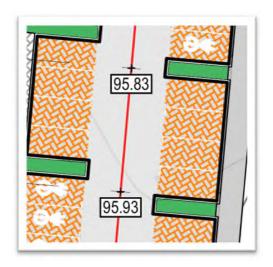
It is proposed to provide landscaped areas between the on-curtilage perpendicular parking spaces behind the cycle tracks and footpaths. Drivers reversing out of these spaces will start their turning manoeuvre before they reach the carriageway and the tyres will cross the landscaped areas. This could lead to muck being brought onto the carriageway and footpath and possibly lead to rutting resulting in accessibility

Example only

RECOMMENDATION

It is recommended that wide enough paved areas ae provided for easy access and egress from the perpendicular parking spaces.

7.3 Issue


LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, Road 6 & Road 14 Cross Section.

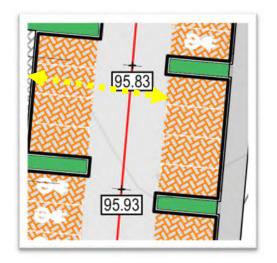
ISSUE

Road 6 and Road 14 have perpendicular parking on both sides. It is unclear what the carriageway width is. There is a risk that drivers will not be easily able to enter or egress from the parking spaces if the adjacent spaces are occupied. This could lead to material damage of other vehicles.

RECOMMENDATION

It is recommended that Road 6 have a suitable cross section and suitable parking space dimensions to allow easy access to the parking spaces.

7.4 Issue


LOCATION

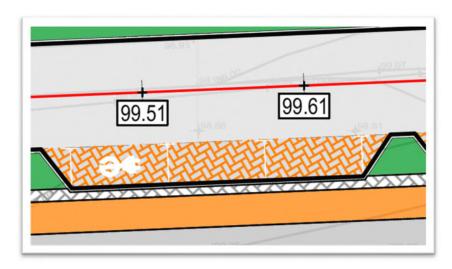
Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, Road 6

ISSUE

There are no gaps/crossing points provided to allow pedestrians from parked vehicles on the eastern side of Road 6 to get to the residential side, especially if the car parking spaces are occupied.

RECOMMENDATION

It is recommended that crossing points be provided.


7.5 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, Electric Vehicle charging spaces.

ISSUE

It is unclear if there is sufficient space for drivers/other vehicle occupants to access the electric vehicle charging infrastructure and to charge their cars without being struck by cyclists on one side or passing vehicles on the other. This may be a particular issue for side charging vehicles.

Example only

RECOMMENDATION

It is recommended that adequate space be provided to facilitate charging with suitable buffer zones to passing vehicles and cyclists.

7.6 Issue

LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, Disabled Parking spaces.

ISSUE

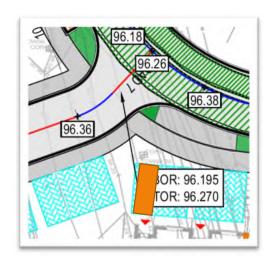
Dished kerbs have not be shown at the disabled parking spaces this could lead to inaccessibility to the footpath network for the mobility impaired.

Example only

RECOMMENDATION

Ensure that there are dropped kerbs and suitable tactile paving at on-road disabled parking spaces.

7.7 Issue


LOCATION

Drawing 210026-DBFL-RD-SP-DR-C-1101 P02, On-curtilage parking Space at Junction of Road 7 & Road 4.

ISSUE

It is unclear how a driver will be able to egress from the on-curtilage parking space at the junction of Road 4 and Road 7 given the orientation of the space, the proximity of the adjacent space and the proximity to the junction where vehicles could be approaching from a number of directions.

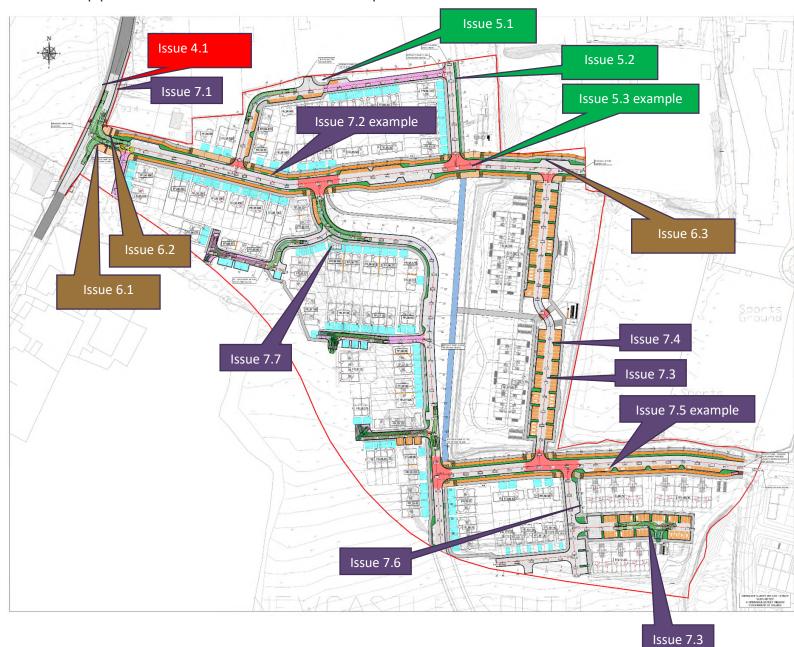
RECOMMENDATION

It is recommended that the parking space be realigned.

8.0 Audit Statement

We certify that we have examined the site on the 17th of May 2022. We have made recommendations that we feel would improve the Street Design. We have provided feedback forms for the Design Team to complete so that the design development can be tracked. We have not been involved in the Design.

Norman Bruton Signed: Repunen Bruton


(Audit Team Leader) Dated: 31-5-2022

Sayed Ahmad Saeed Signed:

(Audit Team Member) Dated: _31-5-2022_____

Appendix A – Issue Location Map

Appendix B

Information Supplied to the Audit Team

Drawing -DBFL-CS-SP-DR-C-1201 Proposed Drainage Layout

Drawing -DBFL-CS-SP-DR-C-1202 Surface Water Drainage Strategy

Drawing -DBFL-CS-SP-DR-C-1203 Attenuation Facility 1

Drawing -DBFL-CS-SP-DR-C-1204 Attenuation Facility 2

Drawing -DBFL-CS-SP-DR-C-1205 Attenuation Facility 3

Drawing -DBFL-CS-SP-DR-C-1206 Attenuation Facility 4

Drawing -DBFL-CS-SP-DR-C-1207 Foul Pumping Station General Arrangement

Drawing -DBFL-CS-SP-DR-C-1208 Attenuation Facility 5

Drawing -DBFL-CS-SP-DR-C-5111 Foul Pumping Station Details

Drawing -DBFL-CS-SP-DR-C-5301 Typical Drainage Details Sheet 1

Drawing -DBFL-CS-SP-DR-C-5302 Typical Drainage Details Sheet 2

Drawing -DBFL-CS-SP-DR-C-5303 Typical Drainage Details Sheet 3

Drawing -DBFL-CS-SP-DR-C-5304 Typical Drainage Details Sheet 4

Drawing -DBFL-RD-SP-DR-C-1101 Proposed Roads Layout

Drawing -DBFL-RD-SP-DR-C-1104 Roads Hierarchy

Drawing -DBFL-RD-SP-DR-C-5101 Typical Road Construction Details Sheet 1

Drawing -DBFL-RD-SP-DR-C-5102 Typical Road Construction Details Sheet 2

Drawing -DBFL-RD-SP-DR-C-5103 Typical Road Construction Details Sheet 3

Drawing -DBFL-RD-SP-DR-C-5104 Typical Foundation Details Sheet 1

Drawing -DBFL-RD-SP-DR-C-5105 Typical Foundation Details Sheet 2

Drawing -DBFL-RD-SP-DR-C-5106 Typical Foundation Details Sheet 3

Drawing -DBFL-WM-SP-DR-C-1301 Proposed Watermain Layout

Drawing Public Lighting Layout - Cairn Homes Properties Ltd

Drawing 1855 PL P 01

Appendix C

Feedback Form

DMURS STREET DESIGN AUDIT FORM – FEEDBACK ON AUDIT REPORT

Scheme: Newcastle Phase 2 QA
Stage: Street Design Audit (planning)
Date Audit (Site Visit) Completed:17-5-2022

Paragraph No. in Quality Audit Report	Problem accepted (yes/no)	Recommended measure accepted (yes/no)	Alternative measures (describe)	Alternative measures accepted by Auditors (Yes/No)
Road Safety Audit				
4.1	Yes	No	DBFL will make SDCC aware of this issue.	Yes
Walking Audit				
5.1	Yes	Yes		
5.2	Yes	Yes		
5.3	Yes	Yes	Crossing points and tactile pavements are provided. Dropped kerbs will be shown at detail design stage and will be provided at all crossing points.	Yes
Cycling Audit				
6.1	Yes	Yes		
6.2	Yes	Yes		
6.3	Yes		A concrete strip is now provided with a dropped kerb to allow cyclists get to road level	Yes
Accessibility Audit				

7.1	Yes	Yes		
7.2	Yes	Yes		
7.3	Yes	Yes		
7.4	No	No	A crossing point is provided at the central area for pedestrians. It is also possible to cross from the northern and southern end of the street. There is 45m between any one crossing point and the furthest away parking space. This provides suitable crossing points with safe visibility splays	Yes
7.5	Yes	Yes	A 750mm buffer is provided to the cycletrack to allow access and egress to parking spaces.	Yes
7.6	Yes	Yes		
7.7	Yes	Yes		

Design Team Leader	Date 26/5/2022
Signed John Moloney	
Signed Raman Brutan Audit Team Leader	Date27/5/2022
Signed Employer	Date31/05/2022

APP I CCTV REPORTS

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project

Project Name: Athgoe Newcastle Surface Water 25-04-22

Project Description: CCTV Survey

Project Number: CES 9404

Project Status: Complete

Project Date: 25/04/2022

Inspection Standard: MSCC5 Sewers & Drainage GB (SRM5 Scoring)

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Table of Contents

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022
	1	

Project Information	P-1
Scoring Summary	P-3
Project Pictures	P-5
Section Profile	P-6
ProjectSummary	P-7
Section Item 1: S1 > S2 (S1X)	1
Section Item 2: S2 > S3 (S2X)	4
Section Item 3: S3 > S4 (S3X)	6
Section Item 4: S5 > S1 (S5X)	8
Section Item 5: S6 > S5 (S6X)	10
Section Item 6: S7 > S6 (S7X)	14
Section Item 7: S8 > S6 (S8X)	16
Section Item 8: S9 > S8 (S9X)	26
Section Item 9: S8.1 > S8 (S8.1X)	35
Section Item 10: S10 > Outfall (S10X)	37
Section Item 11: S13 > S14 (S13X)	39
Section Item 12: S12 > S13 (S12X)	46
Section Item 13: S13.1 > S13 (S13.1X)	51
Section Item 14: S14 > S15 (S14X)	53
Section Item 15: S15 > S16 (S15X)	62
Section Item 16: S17 > S18 (S17X)	65
Section Item 17: S18 > S19 (S18X)	68
Section Item 18: S20 > S21 (S20X)	76

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Information

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Client

Company: DBFL

Description: Consulting Engineers
Contact: Conor O Loughlin
Department: Civil Engineer
Street: Ormond House

Town or City: Upper Ormond Quay

 County:
 Dublin 7

 Post Code:
 D07W704

 Phone:
 01 - 400 4000

 Mobile:
 085 - 169 8141

Email: conor.oloughlin@dbfl.ie

Company: Cairn Homes

Description: Planning Investigation Works

Contact: Conor O'Loughlin
Department: Civil Engineer
Street: Athgoe Road
Town or City: Newcastle
County: Dublin
Post Code: D22XV29
Phone: 01 - 400 4000

Email: conor.oloughlin@dbfl.ie

Contractor

CES Environmental Services Ltd.

Description: CCTV Survey **Contact:** Kieran Murphy

Department: CCTV & Rehabilitation
Street: Tracklands Business Park
Clonroad More, Ennis

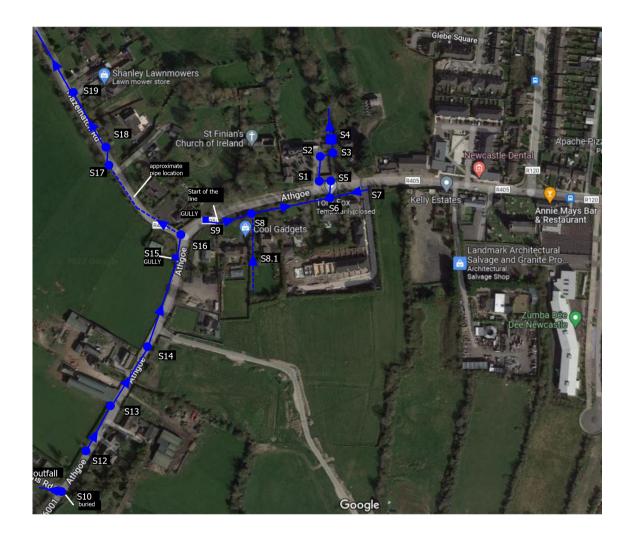
County: Clare

Post Code: V95A598

Phone: 065 - 6866850

Mobile: 085 - 2521556

Email: kmurphy@cesenvironmental.ie



Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Information

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Project Drawing, Page 'Athgoe Newcastle Surface Water DBFL 250422'

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Scoring Summary

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Structural Defects

- Grade 3: Best practice suggests consideration should be given to repairs in the medium term.
- Grade 4: Best practice suggests consideration should be given to repairs to avoid a potential collapse.
- Grade 5: Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

Section	PLR	Grade	Description
7	S8X	4	Multiple defects
14	S14X	4	Multiple defects
17	S18X	4	Hole in drain or sewer from 11 o'clock to 1 o'clock
18	S20X	4	Hole in drain or sewer from 11 o'clock to 1 o'clock

Service / Operational Condition

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
5	S6X	5	Ingress of gravel from 4 o'clock to 8 o'clock, 20% cross-sectional area loss
6	S7X	3	Settled deposits, fine, 15% cross-sectional area loss
7	S8X	5	Roots, mass at joint, 20% cross-sectional area loss
8	S9X	4	Multiple defects
9	S8.1X	3	Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss
11	S13X	4	Multiple defects
12	S12X	3	Multiple defects
14	S14X	4	Multiple defects
15	S15X	3	Multiple defects
16	S17X	3	Joint displaced, medium, finish
17	S18X	4	Connection defective, connecting pipe is intruding at 2 o'clock, 150mm dia, intrusion: 20%
18	S20X	3	Roots, mass at joint, 15% cross-sectional area loss

Abandoned Surveys

Section	PLR	Description
5	S6X	Survey abandoned
5	S6X	Survey abandoned
6	S7X	Survey abandoned
7	S8X	Survey abandoned

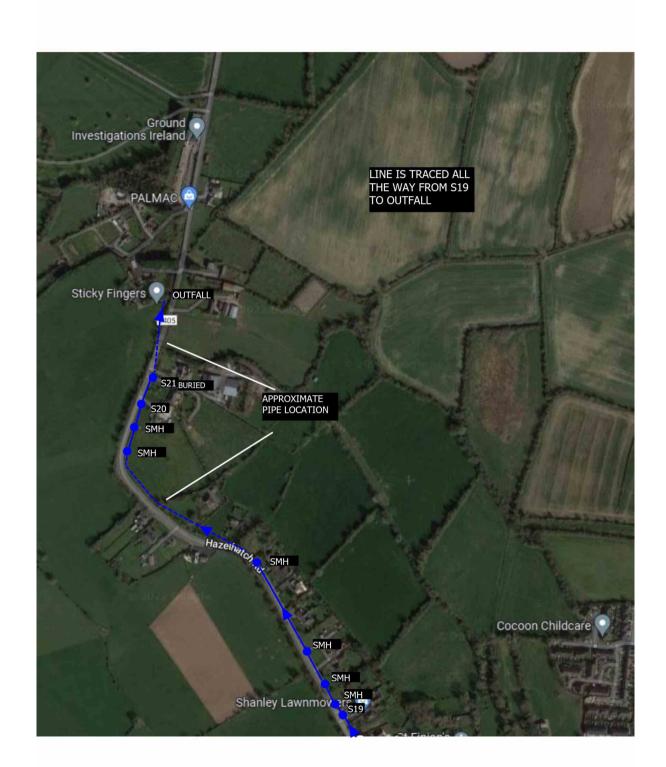
Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Scoring Summary

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Section	PLR	Description
7	S8X	Survey abandoned
8	S9X	Survey abandoned
9	S8.1X	Survey abandoned
11	S13X	Survey abandoned
11	S13X	Survey abandoned
12	S12X	Survey abandoned
13	S13.1X	Survey abandoned
14	S14X	Survey abandoned

Information


These scoring summaries are based on the SRM grading from the WRc.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Pictures

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

hazelhatch_road

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Profile

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Circul	Circular, 225 mm													
Item No.	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length							
12	S12	S13	26/04/2022	Athgoe	Polyvinyl chloride	27.01 m	27.01 m							
14	S14	S15	26/04/2022	Athgoe	Polyvinyl chloride	118.39 m	118.39 m							
15	S15	S16	27/04/2022	Athgoe	Concrete	13.45 m	13.45 m							
16	S17	S18	27/04/2022	Athgoe	Concrete	7.62 m	7.56 m							

Total: 4 Inspections x Circular 225 mm = 166.47 m Total Length and 166.41 m Inspected Length

Circular, 300 mm

lte	m No.	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length
	17	S18	S19	27/04/2022	Hazelhatch road	Concrete	81.93 m	81.93 m
	18	S20	S21	28/04/2022	Hazelhatch road	Concrete	71.19 m	71.19 m

Total: 2 Inspections x Circular 300 mm = 153.12 m Total Length and 153.12 m Inspected Length

Circular, 375 mm

Item No.	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length
8	S9	S8	25/04/2022	Athgoe	Concrete	37.00 m	37.00 m
10	S10	Outfall	26/04/2022	Athgoe	Concrete	37.34 m	37.34 m

Total: 2 Inspections x Circular 375 mm = 74.34 m Total Length and 74.34 m Inspected Length

Circular, 450 mm

Item No.	No. Upstream Node Downstream No		Date	Road	Material	Total Length	Inspected Length	
1	S1	S2	25/04/2022	Athgoe	Polyvinyl chloride	31.55 m	31.55 m	
2	S2	S3	25/04/2022	Athgoe	Polyvinyl chloride	3.29 m	3.29 m	
3	S3	S4	25/04/2022	Athgoe	Polyvinyl chloride	2.80 m	2.80 m	
4	S5	S1	25/04/2022	Athgoe	Polyvinyl chloride	6.63 m	6.63 m	

Total: 4 Inspections x Circular 450 mm = 44.26 m Total Length and 44.26 m Inspected Length

Total: 12 Inspections = 438.18 m Total Length and 438.12 m Inspected Length

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Summary

Project NameProject NumberProject DateAthgoe Newcastle Surface Water 25-04-22CES 940425/04/2022

Insp	ecti	on Summary									
Pipe No.	Insp. No.	Upstream Node	Downstream Node	Dir.	Operator	Insp. Date	Insp. Time	Str	Ser	Final Observation	Length
1	1	S1	S2	DS	Aaa	25/04/2022	10:35	1	1	MHF, UNABLE TO LOCATE	31.55 m
2	1	S2	S3	DS	Aaa	25/04/2022	10:50	1	1	MHF	3.29 m
3	1	S3	S4	DS	Aaa	25/04/2022	10:54	1	1	OCF, HOLDING TANK	2.80 m
4	1	S5	S1	US	Aaa	25/04/2022	11:03	1	1	MHF, CULVERT	6.63 m
5	1	S6	S5	DS	Aaa	25/04/2022	11:42	1	5	SA, ECXTENSIVE JETTING REQUIRED.	0.48 m
5	2	S6	S5	US	Aaa	25/04/2022	11:21	1	4	SA, SILT IN LINE. ECXTENSIVE JETTING REQUIR	0.40 m
6	1	S7	S6	US	Aaa	25/04/2022	11:46	1	3	SA, ECXTENSIVE JETTING REQUIRED	1.22 m
7	1	S8	S6	DS	Aaa	25/04/2022	12:07	4	5	SA, UNABLE TO PASS THE ROOTS. CUTTING RE	49.17 m
7	2	S8	S6	US	Aaa	25/04/2022	11:53	4	3	SA, SILT IN LINE. ECXTENSIVE JETTING REQUIR	0.76 m
8	1	S9	S8	US	Aaa	25/04/2022	15:39	1	4	BRF, START OF THE LINE. NO MANHOLE	37.00 m
8	2	S9	S8	US	Aaa	25/04/2022	12:41	1	4	SA, UNABLE TO SURVEY. ECXTENSIVE JETTING	0.21 m
9	1	S8.1	S8	US	Aaa	25/04/2022	15:59	1	3	SA, UNABLE TO REACH THE PIPE FROM THE MA	0.00 m
10	1	S10	OUTFALL	US	Aaa	26/04/2022	8:18	1	1	MHF, buried	37.34 m
11	1	S13	S14	US	Aaa	26/04/2022	11:31	1	4	SA, UNABLE TO SURVEY. EXTENSIVE JETTING F	20.08 m
11	2	S13	S14	DS	Aaa	26/04/2022	10:22	1	4	SA, UNABLE TO SURVEY. ECXTENSIVE JETTING	34.49 m
12	1	S12	S13	US	Aaa	26/04/2022	10:36	1	3	MHF	27.01 m
12	2	S12	S13	US	Aaa	26/04/2022	10:29	1	3	SA, UNABLE TO SURVEY. JETTING REQUIRED.	16.50 m
13	1	S13.1	S13	US	Aaa	26/04/2022	11:13	1	1	SA, UNABLE TO SURVEY. CULVERT	0.13 m
14	1	S14	S15	DS	Aaa	26/04/2022	12:59	4	4	GYF	118.39 m
14	2	S14	S15	DS	Aaa	26/04/2022	11:50	1	4	SA, NEEDS JETTING	57.69 m
15	1	S15	S16	DS	Aaa	27/04/2022	9:40	1	3	MHF, BURIED	13.45 m
16	1	S17	S18	US	Aaa	27/04/2022	14:59	2	3	MHF, BURIED	7.56 m
17	1	S18	S19	DS	Aaa	27/04/2022	15:04	4	4	MHF, SILT TRAP MANHOLE	81.93 m
18	1	S20	S21	DS	Aaa	28/04/2022	11:22	4	4	MHF, BURIED. NO COVER. GULLY CONNECTED	71.19 m
										Total:	619.25 m

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Project Summary

Project Name	Project Number	Project Date
Athgoe Newcastle Surface Water 25-04-22	CES 9404	25/04/2022

Defe	ect S	Summary								(CCTV	Oraina	ge Su	rvey O	bserv	ation C	Count						
				General Structural Condition										Se	rvice (Condit	ion		Misc				
Sect. No.	Insp. No.	Upstream Node	Downstream Node	Insp. Length (m)	No. Grade 4/5 Obs.	Survey Abandoned	Camera Under Water	Cracks	Fractures	Broken	Deformed	Collapsed	Holes	Surface Damage	Displaced Joints	Open Joints	Roots	Infiltration	Encrustation	Silt	Grease	Obstruction	Water Level Line Deviates
1	1	S1	S2	31.6												3							1
2	1	S2	S3	3.3																			1
3	1	S3	S4	2.8												1							1
4	1	S5	S1	6.6																			1
5	1	S6	S5	0.5		1												1					1
5	2	S6	S5	0.4		1														1			1
6	1	S7	S6	1.2		1														1			1
7	1	S8	S6	49.2		1			1				1		4		5			4			2
7	2	S8	S6	0.8		1			3											2			1
8	1	S9	S8	37.0											11		5			1			2
8	2	S9	S8	0.2		1														2			1
9	1	S8.1	S8	0.0		1												1					1
10	1	S10	OUTFALL	37.3																			3
11	1	S13	S14	20.1		1										1				5			2
11	2	S13	S14	34.5		1														1			4
12	1	S12	S13	27.0																4			1
12	2	S12	S13	16.5		1														2			1
13	1	S13.1	S13	0.1		1																	1
14	1	S14	S15	118.4					1		1		1		9	1				1			1
14	2	S14	S15	57.7		1									1					2			2
15	1	S15	S16	13.4											4								1
16	1	S17	S18	7.6				2							2		1						1
17	1	S18	S19	81.9				1	3				1		2		10						1
18	1	S20	S21	71.2									1				4						2
	•	•	Total:	619.3		12		3	8		1		4		33	6	25	2		26			34

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S1X

1				=			
Item No.	No. Insp. No. Date Time		Client`s Job Ref	Weather	Pre Cleaned	PLR	
1	1	25/04/22	10:35	Athgoe Newcastl	No Rain Or Snow	Yes	S1X
Ope	perator Vehicle		icle	Camera	Preset Length	Legal Status	Alternative ID
A.A	AAA 142-RN-104		Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S1
Road:	Athgoe	Inspected Length:	31.55 m	Upstream Pipe Depth:	
Location:	Fields, farmland etc	Total Length:	31.55 m	Downstream Node:	S2
Surface Type:	Grass	Joint Length:	6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surv	ey	Lining Material:	No Lining	
Commontos					

Comments:

Recon	nmenda	tions:									
Scale:	1:2	73 Positi	on [m] Co	ode O	bservation				MPEG	Photo	o Grade
	Depth:	m									
		0.0	<u>0</u> N	IH S	tart node, manhole, r	reference: S1			00:00:00	1	
		0.0	<u>o</u> v	/L W	Vater level, 5% of the	vertical dimen	sion		00:00:06		
		0.8	<u>6</u> O	JL C	pen joint, large				00:00:16	2	1
		7.1	<u>4</u> 0	JL C	pen joint, large				00:00:59	3	1
↓											
		25.20	<u> </u>	JL C	pen joint, large				00:03:05	4	1
	S2 Depth:	31.5	<u>5</u> M	HF F	inish node, manhole,	reference: S2	: UNABLE TO	LOCATE	00:03:56	5	
	Depth:										
			onstruction Feat					ellaneous I Operationa		ons	
STR N	lo. Def	STR Peak	STR Mean	STR T	otal STR Grade	SER No. Def	SER Peak	SER Mea	n SER	Total	SER Grade

0.0

6.0

1.0

0

1.0

0.0

0.0

0.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 25/04/2022 - S1X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
1	Downstream	S1X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S1

2, 00:00:16, 0.86 m Open joint, large

3, 00:00:59, 7.14 m Open joint, large

4, 00:03:05, 25.20 m Open joint, large

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 25/04/2022 - S1X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
1	Downstream	S1X	Athgoe Newcastl	DBFL

5, 00:03:56, 31.55 m Finish node, manhole, reference: S2, UNABLE TO LOCATE

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section	Inspection	- 25/04/2022	- S2X
---------	------------	--------------	-------

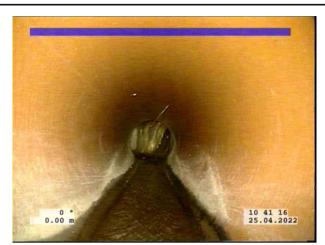
1				-			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
2	1	25/04/22	10:50	Athgoe Newcastl	No Rain Or Snow	Yes	S2X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A	AΑ	142-R	N-104	lpek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S2
Road:	Athgoe	Inspected Length:	3.29 m	Upstream Pipe Depth:	
Location:	Fields, farmland etc	Total Length:	3.29 m	Downstream Node:	S3
Surface Type:	Grass	Joint Length:	6.00 m	Downstream Pipe Depth:	
Use:	Surface water	-1	Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surv	еу	Lining Material:	No Lining	
Commenter			-		

Comments:

Recommendations:

pth: m						
62						
S2	0.00	МН	Start node, manhole, reference: S2	00:00:00	1	
	0.00	WL	Water level, 5% of the vertical dimension	00:00:05		
S3 apth: m	3.29_	MHF	Finish node, manhole, reference: S3	00:00:26	2	
		3.29	3.29 MHF	3.29 MHF Finish node, manhole, reference: S3	3.29 MHF Finish node, manhole, reference: S3 00:00:26	3.29 MHF Finish node, manhole, reference: S3 00:00:26 2


	Con	struction Feat	ıres			Misc	ellaneous Feat	ures		
	Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade	
0	0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0	

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 25/04/2022 - S2X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
2	Downstream	S2X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S2

2, 00:00:26, 3.29 m Finish node, manhole, reference: S3

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section	Inspection	- 25/04/2022	- S3X
---------	------------	--------------	--------------

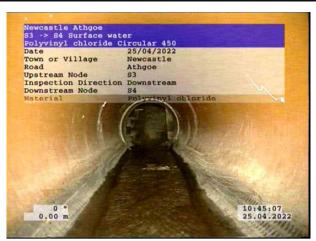
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
3	1	25/04/22	10:54	Athgoe Newcastl	No Rain Or Snow	Yes	S3X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node: S3	
Road:	Athgoe	Inspected Length:	2.80 m	Upstream Pipe Depth:	
Location:	Gardens (private)	Total Length:	2.80 m	Downstream Node: S4	
Surface Type:	Grass	Joint Length:	6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	Э у	Lining Material:	No Lining	
C	•		•		

Comments:

Recommendations:

Scale	1:50	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m S3	0.00_	МН	Start node, manhole, reference: S3	00:00:00	1	
1		1.50	WL	Water level, 5% of the vertical dimension	00:00:32		
		1.79	OJL	Open joint, large	00:00:20	2	1
	S4	2.80	OCF	Finish node, other special chamber, reference: S4: HOLDING TANK	00:00:52	3	
	S4 Depth: m						


	Construction Features					Misc	ellaneous Feat	ures	
	Structural Defects					Service & Operational Observations			
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
1	2.0	0.0	2.0	1.0	0	0.0	0.0	0.0	1.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 25/04/2022 - S3X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Downstream	S3X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S3

2, 00:00:20, 1.79 m Open joint, large

3, 00:00:52, 2.80 m Finish node, other special chamber, reference: S4, HOLDING TANK

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S5	Section I	nspection -	25/04/2022	- S5X
---	-----------	-------------	------------	-------

1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
4	4 1 25/04/22 11:03		11:03	Athgoe Newcastl	No Rain Or Snow	Yes	S5X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.A	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S5
Road:	Athgoe	Inspected Length:	6.63 m	Upstream Pipe Depth:	
Location:	Fields, farmland etc	Total Length:	6.63 m	Downstream Node:	S1
Surface Type:	Grass			Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	450 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose: Sample condition survey		Lining Material:	No Lining		
Commontos			•		

Commer	nts:	,	ipio contaition c			Linning Materi		-II III I I I		
Recomm		-								
Scale:	1:58	Positio	n [m] Co	ode Obser	vation			MI	PEG Pho	oto Grade
D	epth: m S1									
	31									
()									
	\leftarrow	0.00	_ N	IH Start n	ode, manhole,	reference: S1		00:0	00:00 1	
		0.00	W	/L Water	level, 5% of the	e vertical dimer	sion	00:0	80:00	
†										
		6.63	_ M	HF Finish	node, manhole	, reference: S5	: CULVERT	00:0	00:53 2,	3
	S 5									
D	epth: m									
		Con	struction Feat	ıres			Misc	ellaneous Feat	ures	
		St	tructural Defec	ts			Service &	Operational Ob	servations	
STR No.	Def S	TR Peak	STR Mean	STR Total	STR Grade		SER Peak	SER Mean	SER Total	SER Grade
0		0.0	0.0	0.0	1.0	0	0.0	0.0	0.0	1.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 25/04/2022 - S5X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
4	Upstream	S5X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S1

2, 00:00:53, 6.63 m Finish node, manhole, reference: S5, CULVERT

3, 00:00:53, 6.63 m Finish node, manhole, reference: S5, CULVERT

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S6	Section	Inspection -	- 25/04/2022	- S6X
---	---------	--------------	--------------	-------

			•					
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR	
5	2	25/04/22 11:42		Athgoe Newcastl	No Rain Or Snow	No	S6X	
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID	
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream N	ode:	S6	
Road:	Athgoe	Inspected Length:	0.48 m	Upstream P	ipe Depth:		
Location:	Other walkway	Total Length:	10.00 m	Downstream	n Node:	S5	
Surface Type:	Grass	The state of the		Downstream	Downstream Pipe Depth:		
Use:	Culverted watercourse		Pipe Shape:	Rectangular			
Type of Pipe:	Gravity drain/sewer		Dia/Height:	500 mm	Width:	500 mm	
Flow Control:	No flow control		Material:	Masonry (rai	ndom)		
Year Constructed:	Not Specified		Lining Type:	No Lining			
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining			

Comments:

Scale:	1:87 Depth: m	Position [m]	Code	Observation	MPEG	Photo	Grade
	S6						
		0.00	МН	Start node, manhole, reference: S6	00:00:00	1	
	+	0.00	WL	Water level, 20% of the vertical dimension	00:00:05		
		0.00	INGG	Ingress of gravel from 4 o'clock to 8 o'clock, 20% cross-sectional area loss	00:00:06	2	5
		0.48	SA	Survey abandoned: ECXTENSIVE JETTING REQUIRED.	00:00:08	3	
1							
•							
		10.00		End of pipe			
	S5 Depth: m						

STR Grade SER No. Def

1.0

SER Peak

10.0

SER Mean

0.0

SER Total

10.0

STR Peak

STR Total

0.0

STR Mean

0.0

STR No. Def

SER Grade

5.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
5	Downstream	S6X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S6

2, 00:00:06, 0.00 m Ingress of gravel from 4 o'clock to 8 o'clock, 20% cross-sectional area loss

3, 00:00:08, 0.48 m Survey abandoned, ECXTENSIVE JETTING REQUIRED.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S6X

				-			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
5	1	25/04/22	11:21	Athgoe Newcastl	No Rain Or Snow	Yes	S6X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AA	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream N	Node:	S6
Road:	Athgoe	Inspected Length:	0.40 m	Upstream F	Pipe Depth:	
Location:	Other walkway	Total Length:	10.00 m	Downstrea	m Node:	S5
Surface Type:	Grass	Joint Length:		Downstream Pipe Depth:		n:
Use:	Culverted watercourse		Pipe Shape:	Rectangula	r	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	500 mm	Width:	500 mm
Flow Control:	No flow control		Material:	Masonry (ra	andom)	
Year Constructed:	Not Specified		Lining Type:	No Lining	No Lining	
Inspection Purpose:	Sample condition surve	y	Lining Material:	No Lining		

Comments:

Recommendations:

Scale:	nmendatior 1:87	Position [m]	Code	Observation			MPEG	Photo	Grade
Scale	Depth: m	רטפונוטוו נוחן	Coue	Observation		'	VIFEU	FIIULU	Graue
	S5								
		0.00	MH	Start node, manhole,	reference: S5	00	0:00:00	1	
		0.00	WL	Water level, 20% of the	ne vertical dimension	00	0:00:08		
		0.00	DES	Settled deposits, fine,	20% cross-sectional area I	oss 00	0:00:10	2	4
		0.40	SA	Survey abandoned: S REQUIRED.	ILT IN LINE. ECXTENSIVE	JETTING 00	0:00:46	3	
†									
•									
	!!								
	- ; ;								
		10.00		End of pipe					
	S6 Depth: m								
		Construction	Features			scellaneous Fe			
CTD N	lo Dof ST	Structural STR M		P Total STP Grada	Service SEP No. Def SEP Peak	& Operational C			EP Grade

STR Grade SER No. Def

1.0

SER Peak

5.0

SER Mean

0.0

SER Total

5.0

STR Peak

STR Total

0.0

STR Mean

0.0

STR No. Def

SER Grade

4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
5	Upstream	S6X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S5

2, 00:00:10, 0.00 m Settled deposits, fine, 20% cross-sectional area loss

3, 00:00:46, 0.40 m Survey abandoned, SILT IN LINE. ECXTENSIVE JETTING REQUIRED.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Ins	spection -	25/04/2022	- S7X

				•			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
6	1	25/04/22	11:46	Athgoe Newcastl	No Rain Or Snow	No	S7X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S7
Road:	Athgoe	Inspected Length:	1.22 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	30.00 m	Downstream Node:	S6
Surface Type:	Asphalt Highway Joint Length:		2.50 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining	

Comments:

tecom	mendation	15:						
Scale:	1:259	Position [m]	Code	Observation		MPEG	Photo	Grade
ı	Depth: m S6							
1								
(0.00	МН	Start node, manhole,	reference: S6	00:00:00	1	
	#							
		0.00	WL	Water level, 15% of th	e vertical dimension	00:00:13		
		0.00	DES	Sattled denosits fine	15% cross-sectional area loss	00:00:15	2	3
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DES	Settieu ueposits, iirie,	13% (1055-56011011a1 a16a 1055	00.00.15	۷	J
		1.22	SA	Survey abandoned: E	CXTENSIVE JETTING REQUIRED	00:01:23	3	
	! !							
A								
	! !							
	!!							
		30.00		Fod of sing				
1		30.00		End of pipe				
(
ı	S7							
	Depth: m							
		Construction			Miscellaneo			

STR Grade SER No. Def

1.0

STR Peak

STR No. Def

Structural Defects

STR Mean

0.0

STR Total

0.0

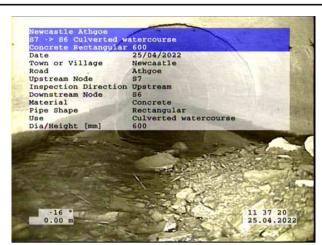
SER Grade

3.0

Service & Operational Observations

0.0

SER Mean | SER Total


2.0

SER Peak

2.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
6	Upstream	S7X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S6

 $2,\,00{:}00{:}15,\,0.00~\text{m}$ Settled deposits, fine, 15% cross-sectional area loss

3, 00:01:23, 1.22 m Survey abandoned, ECXTENSIVE JETTING REQUIRED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
7	2	25/04/22	12:07	Athgoe Newcastl	No Rain Or Snow	Yes	S8X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AA	λA	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S8	
Road:	Athgoe	Inspected Length:	49.17 m	Upstream Pipe Depth:		
Location:	Road Total Length: 5		55.00 m	Downstream Node:	S6	
Surface Type:	Asphalt Highway	Joint Length:	2.50 m	Downstream Pipe Depth:		
Use:	Surface water		Pipe Shape:	Rectangular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition surve	ey .	Lining Material:	No Lining		

Comments:

Recom	mendation	s:					
Scale:	1:387	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m S8	0.00	МН	Start node, manhole, reference: S8	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:07		
		8.71	Н	Hole in drain or sewer at 7 o'clock	00:00:43	2	4
		8.71	RF	Roots, fine	00:00:52	3	2
		16.77_	CXI	Connection defective, connecting pipe is intruding at 1 o'clock, 100mm dia, intrusion: 5%	00:02:03	4	3
,		19.57	CN	Connection other than junction at 3 o'clock, 150mm dia	00:02:24	5	
		32.98	JDL	Joint displaced, large	00:03:49	6	1/4
•		35.20 S01	JDM	Joint displaced, medium, start	00:04:33	7	
		35.63	RF	Roots, fine	00:04:43	8	2
		<u>38.53</u>	JDL	Joint displaced, large	00:05:16	9	1/4
		38.86	RFJ	Roots, fine at joint	00:05:24	10	2
		39.92 F01	JDM	Joint displaced, medium, finish	00:05:35	11	1/3
		40.89	WL	Water level, 10% of the vertical dimension	00:05:48		
		42.89	FL	Fracture, longitudinal at 11 o'clock	00:06:10	12	3/2
		43.92 S02	DES	Settled deposits, fine, 10% cross-sectional area loss, start	00:06:25	13	

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S8X

Item No.	Insp. No.	Date Time		Client's Job Ref	Weather	Pre Cleaned	PLR	
7	2	25/04/22	5/04/22 12:07 Athgoe Newcastl		No Rain Or Snow	Yes	S8X	
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID	
A.	AAA 142-RN-104		Ipek Rcx 90 Crawler Not Specified		Public Sewer	Not Specified		

Scale:	1:387	Position [m]	Code	Observation	MPEG	Photo	Grade
		45.72	RFJ	Roots, fine at joint	00:06:47	14	2
		46.80	DES	Settled deposits, fine, 15% cross-sectional area loss	00:07:01	15	3
🔻		48.51	DES	Settled deposits, fine, 20% cross-sectional area loss	00:07:38	16	4
		48.57	RMJ	Roots, mass at joint, 20% cross-sectional area loss	00:07:43	17	5
	S6 \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DES	Settled deposits, fine, 10% cross-sectional area loss, finish	00:08:48		3
	\	49.17	SA	Survey abandoned: UNABLE TO PASS THE ROOTS. CUTTING REQUIRED	00:08:51	18	
		55.00		End of pipe			

Depth: m

	Con	struction Feat	ures		Miscellaneous Features					
	Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade	
5	80.0	0.0	129.0	4.0	13	56.0	5.0			

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 25/04/2022 - S8X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref


 7
 Downstream
 S8X
 Athgoe Newcastl
 DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S8

2, 00:00:43, 8.71 m Hole in drain or sewer at 7 o'clock

3, 00:00:52, 8.71 m Roots, fine

4, 00:02:03, 16.77 m Connection defective, connecting pipe is intruding at 1 o'clock, 100mm dia, intrusion: 5%

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 25/04/2022 - S8X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 7
 Downstream
 S8X
 Athgoe Newcastl
 DBFL

 $5,\,00{:}02{:}24,\,19.57~\text{m}$ Connection other than junction at 3 o'clock, 150mm dia

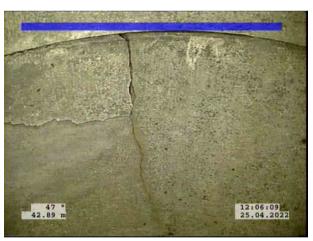
6, 00:03:49, 32.98 m Joint displaced, large

7, 00:04:33, 35.20 m Joint displaced, medium, start

8, 00:04:43, 35.63 m Roots, fine

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Downstream	S8X	Athgoe Newcastl	DBFL


9, 00:05:16, 38.53 m Joint displaced, large

10, 00:05:24, 38.86 m Roots, fine at joint

11, 00:05:35, 39.92 m Joint displaced, medium, finish

12, 00:06:10, 42.89 m Fracture, longitudinal at 11 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Downstream	S8X	Athgoe Newcastl	DBFL

 $13,\,00:06:25,\,43.92\;m$ Settled deposits, fine, 10% cross-sectional area loss, start

14, 00:06:47, 45.72 m Roots, fine at joint

15, 00:07:01, 46.80 m Settled deposits, fine, 15% cross-sectional area loss

16, 00:07:38, 48.51 m Settled deposits, fine, 20% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Downstream	S8X	Athgoe Newcastl	DBFL

17, 00:07:43, 48.57 m Roots, mass at joint, 20% cross-sectional area loss

18, 00:08:51, 49.17 m Survey abandoned, UNABLE TO PASS THE ROOTS. CUTTING REQUIRED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S8X

Item No.	Insp. No.	Date Time		Client's Job Ref	Weather	Pre Cleaned	PLR	
7	1	25/04/22	2 11:53 Athgoe Newcastl		No Rain Or Snow	Yes	S8X	
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID	
A.	AAA 142-RN-104		lpek Rcx 90 Crawler 0.70 m		Public Sewer	Not Specified		

Town or Village:	Newcastle Inspection Directio		Upstream	Upstream Node:	S8
Road:	Athgoe	Inspected Length:	0.76 m	Upstream Pipe Depth:	
Location:	Road Total Length: 5		55.00 m	Downstream Node:	S6
Surface Type:	Asphalt Highway	Joint Length:	2.50 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Rectangular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	600 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining	

Comments:

Recommendations:

Scale:	1:475	Position	[m] Co	de	Observ	ation			ľ	MPEG	Photo	Grade
I	Depth: m S6											
/												
(0.00	М	Н	Start no	ode, manhole,	reference: S6		00	0:00:00	1	
		0.00	W	L	Water I	evel, 15% of th	ne vertical dime	ension	00	0:00:05		
		0.00	DE	S	Settled	deposits, fine,	10% cross-se	ctional area los	ss 00	0:00:09	2	3
		0.18	DE	S	Settled	deposits, fine,	15% cross-se	ctional area los	ss 00	0:01:00	3	3
		0.29	F	L	Fracture	e, longitudinal	at 10 o'clock		00	0:01:07	4	3/2
		0.65	С	N	Connec	ction other than	i junction at 12	o'clock, 150m	m dia 00	0:01:18	5	
1		0.65	FI	M	Fracture	es, multiple fro	m 10 o'clock to	2 o'clock	00	0:01:22	6	4/2
		0.76	F	L	Fracture	e, longitudinal	at 2 o'clock		00	0:01:34	7	3/2
		0.76	S	A	Survey REQUI		ILT IN LINE. E	CXTENSIVE J	ETTING 00	0:01:44	8	
(S8 Depth: m	55.00			End of	pipe						
		Constr	uction Featu	ires					ellaneous Fe			
OTD 11	- D-() 5=	Stru	ctural Defect	S) T - / !	OTD C	0FD 1/ 5 1	Service &	Operational C	Observation		050.6
STR No		TR Peak	STR Mean		R Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER 7		SER Grade

0.0

160.0

4.0

4.0

0.0

7.0

3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Upstream	S8X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S6

2, 00:00:09, 0.00 m Settled deposits, fine, 10% cross-sectional area loss

3, 00:01:00, 0.18 m Settled deposits, fine, 15% cross-sectional area loss

4, 00:01:07, 0.29 m Fracture, longitudinal at 10 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
7	Upstream	S8X	Athgoe Newcastl	DBFL

5, 00:01:18, 0.65 m Connection other than junction at 12 o'clock, 150mm dia

6, 00:01:22, 0.65 m Fractures, multiple from 10 o'clock to 2 o'clock

7, 00:01:34, 0.76 m Fracture, longitudinal at 2 o'clock

8, 00:01:44, 0.76 m Survey abandoned, SILT IN LINE. ECXTENSIVE JETTING REQUIRED

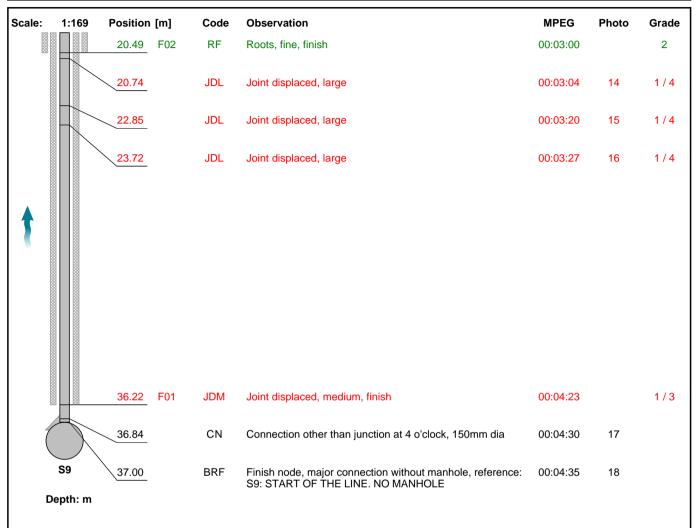
Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Ins	pection -	25/04/2022	- S9X

Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
8	2	25/04/22	15:39	Athgoe Newcastl	No Rain Or Snow	Yes	S9X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A/	λA	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S9
Road:	Athgoe	Inspected Length:	37.00 m	Upstream Pipe Depth:	
Location:	Other walkway	Total Length:	37.00 m	Downstream Node:	S8
Surface Type:	Grass	Joint Length:	0.90 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	375 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	ey	Lining Material:	No Lining	

Comments:


Recommendations:

Sametha			Observation	MPEG	Photo	Grade
Depth: m						
S8	0.00	MH	Start node, manhole, reference: S8	00:00:00	1	
	0.00	WL	Water level, 10% of the vertical dimension	00:00:06		
	0.25	JDM	Joint displaced, medium	00:00:16	2	1/3
	1.00	JDL	Joint displaced, large	00:00:28	3	1 / 4
	1.00	RF	Roots, fine	00:00:39	4	2
	2.23	JDM	Joint displaced, medium	00:00:52	5	1/3
	3.90 S01	JDM	Joint displaced, medium, start	00:01:09	6	
	7.10	DES	Settled deposits, fine, 15% cross-sectional area loss	00:01:29	7	3
	12.74	RF	Roots, fine	00:01:56	8	2
	14.73	RF	Roots, fine	00:02:09	9	2
	15.76 S02	RF	Roots, fine, start	00:02:17	10	
	16.76	JDL	Joint displaced, large	00:02:28	11	1 / 4
	17.72	JDL	Joint displaced, large	00:02:36	12	1 / 4
	18.53	WL	Water level, 5% of the vertical dimension	00:02:45		
	18.68	JDL	Joint displaced, large	00:02:48	13	1 / 4
		0.25 1.00 1.00 2.23 3.90 S01 7.10 12.74 14.73 15.76 S02 16.76 17.72 18.53	0.25 JDM 1.00 JDL 1.00 RF 2.23 JDM 3.90 S01 JDM 7.10 DES 12.74 RF 14.73 RF 15.76 S02 RF 16.76 JDL 17.72 JDL 18.53 WL	JDM Joint displaced, medium 1.00 JDL Joint displaced, large 1.00 RF Roots, fine 2.23 JDM Joint displaced, medium 3.90 S01 JDM Joint displaced, medium, start 7.10 DES Settled deposits, fine, 15% cross-sectional area loss 12.74 RF Roots, fine 14.73 RF Roots, fine 15.76 S02 RF Roots, fine, start 16.76 JDL Joint displaced, large 17.72 JDL Joint displaced, large WL Water level, 5% of the vertical dimension	0.25 JDM Joint displaced, medium 00:00:16 1.00 JDL Joint displaced, large 00:00:28 1.00 RF Roots, fine 00:00:39 2.23 JDM Joint displaced, medium 00:00:52 3.90 S01 JDM Joint displaced, medium, start 00:01:09 7.10 DES Settled deposits, fine, 15% cross-sectional area loss 00:01:29 12.74 RF Roots, fine 00:01:56 14.73 RF Roots, fine 00:02:09 15.76 S02 RF Roots, fine, start 00:02:17 16.76 JDL Joint displaced, large 00:02:28 17.72 JDL Joint displaced, large 00:02:36 18.53 WL Water level, 5% of the vertical dimension 00:02:45	0.25. JDM Joint displaced, medium 00:00:16 2 1.00. JDL Joint displaced, large 00:00:28 3 1.00. RF Roots, fine 00:00:39 4 2.23. JDM Joint displaced, medium 00:00:52 5 3.90. S01 JDM Joint displaced, medium, start 00:01:09 6 7.10. DES Settled deposits, fine, 15% cross-sectional area loss 00:01:29 7 12.74. RF Roots, fine 00:01:56 8 14.73. RF Roots, fine 00:02:09 9 15.76. S02 RF Roots, fine, start 00:02:17 10 16.76. JDL Joint displaced, large 00:02:28 11 17.72. JDL Joint displaced, large 00:02:36 12 18.53. WL Water level, 5% of the vertical dimension 00:02:45

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022 - S9X

1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
8	2	25/04/22	15:39	Athgoe Newcastl	No Rain Or Snow	Yes	S9X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AA	λA	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Construction Features						Misc	ellaneous Feat	ures	
	Structural Defects					Service & Operational Observations			
STR No. Def	STR No. Def STR Peak STR Mean STR Total STR Grade					SER Peak	SER Mean	SER Total	SER Grade
10	10 3.0 0.0 49.0 1.0				15	8.0	0.0	115.0	4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref	
8	Upstream	S9X	Athgoe Newcastl	DBFL	

1, 00:00:00, 0.00 m Start node, manhole, reference: S8

2, 00:00:16, 0.25 m Joint displaced, medium

3, 00:00:28, 1.00 m Joint displaced, large

4, 00:00:39, 1.00 m Roots, fine

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
8	Upstream	S9X	Athgoe Newcastl	DBFL

5, 00:00:52, 2.23 m Joint displaced, medium

6, 00:01:09, 3.90 m Joint displaced, medium, start

7, 00:01:29, 7.10 m Settled deposits, fine, 15% cross-sectional area loss

8, 00:01:56, 12.74 m Roots, fine

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
8	Upstream	S9X	Athgoe Newcastl	DBFL

9, 00:02:09, 14.73 m Roots, fine

10, 00:02:17, 15.76 m Roots, fine, start

11, 00:02:28, 16.76 m Joint displaced, large

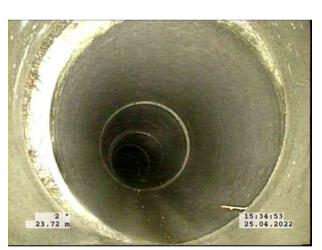
12, 00:02:36, 17.72 m Joint displaced, large

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 25/04/2022 - S9X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 8
 Upstream
 S9X
 Athgoe Newcastl
 DBFL


13, 00:02:48, 18.68 m Joint displaced, large

14, 00:03:04, 20.74 m Joint displaced, large

15, 00:03:20, 22.85 m Joint displaced, large

16, 00:03:27, 23.72 m Joint displaced, large

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
8	Upstream	S9X	Athgoe Newcastl	DBFL

17, 00:04:30, 36.84 m Connection other than junction at 4 o'clock, 150mm dia

18, 00:04:35, 37.00 m Finish node, major connection without manhole, reference: S9, START OF THE LINE. NO MANHOLE

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 25/04/2022	2 - S9	X
---------------------------------	--------	---

1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
8	1	25/04/22	12:41	Athgoe Newcastl	No Rain Or Snow	No	S9X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AA	λA	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S9
Road:	Athgoe	Inspected Length:	0.21 m	Upstream Pipe Depth:	
Location:	Other walkway	Total Length:	37.00 m	Downstream Node:	S8
Surface Type:	Grass	Joint Length:	0.90 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	375 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	ey .	Lining Material:	No Lining	
C	•		•		

Comments:

Scale:	1:319 Depth: m	Position [m]	Code	Observation	MPEG	Photo	Grade
	\$8						
		0.00_	МН	Start node, manhole, reference: S8	00:00:00	1	
		0.00	WL	Water level, 0% of the vertical dimension	00:00:05		
		0.00 S01	DES	Settled deposits, fine, 25% cross-sectional area loss, start	00:00:08	2	
		0.16 F01	DES	Settled deposits, fine, 25% cross-sectional area loss, finish	00:00:45		4
		0.21	SA	Survey abandoned: UNABLE TO SURVEY. ECXTENSIVE JETTING REQUIRED	00:00:49	3	
•							
T							
		37.00		End of pipe			
		_					
	S9 Depth: m						
			Features	Miscellaneous			

STR Grade SER No. Def

1.0

SER Peak

5.0

SER Mean

0.0

SER Total

5.0

STR Peak

STR Total

0.0

STR Mean

0.0

STR No. Def

SER Grade

4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
8	Upstream	S9X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S8

2, 00:00:08, 0.00 m Settled deposits, fine, 25% cross-sectional area loss, start

3, 00:00:49, 0.21 m Survey abandoned, UNABLE TO SURVEY. ECXTENSIVE JETTING REQUIRED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section In	spection -	25/04/2022	- S8.1X
------------	------------	------------	---------

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
9	1	25/04/22	15:59	Athgoe Newcastl	No Rain Or Snow	No	S8.1X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S8.1
Road:	Athgoe	Inspected Length:	0.00 m	Upstream Pipe Depth:	
Location:	Other walkway	Total Length:	5.00 m	Downstream Node:	S8
Surface Type:	Grass	Joint Length:		Downstream Pipe Depth:	
Use:	Surface water	1	Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	ey .	Lining Material:	No Lining	
Commonts:					

Comments:

Scale:	1:50	Position [m]	Code	Observation	MPEG	Photo	Grade
D	epth: m S8						
(
		0.00	МН	Start node, manhole, reference: S8	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:06		
		0.00	INGG	Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss	00:00:16		3
		0.00	SA	Survey abandoned: UNABLE TO REACH THE PIPE FROM THE MANHOLE.	00:00:16	2	
↑							
	! !						
		5.00		Exterior			
(5.00		End of pipe			
`	S8.1						
	epth: m						

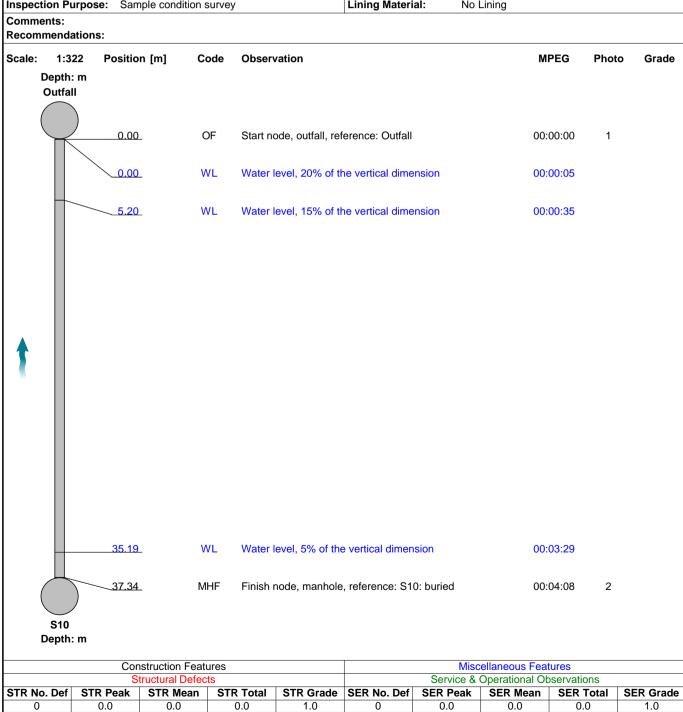
Construction Features						Misc	ellaneous Feat	tures	
	S	tructural Defec	ts			Service &	Operational Ob	servations	
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0	0.0	0.0	0.0	1.0	1	4.0	0.0	4.0	3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
9	Upstream	S8.1X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S8

2, 00:00:16, 0.00 m Survey abandoned, UNABLE TO REACH THE PIPE FROM THE MANHOLE.



Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S10

				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
10	2	26/04/22	8:18	Athgoe Newcastl	No Rain Or Snow	No	S10X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S10
Road:	Athgoe	Inspected Length:	37.34 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	37.34 m	Downstream Node:	OUTFALL
Surface Type:	Grass Joint Length:		0.90 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	375 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining	
C					

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
10	Upstream	S10X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, outfall, reference: Outfall

2, 00:04:08, 37.34 m Finish node, manhole, reference: S10, buried

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S13X

Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
11	3	26/04/22	11:31	Athgoe Newcastl	No Rain Or Snow	No	S13X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S13
Road:	Athgoe	Inspected Length:	20.08 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	60.00 m	Downstream Node:	S14
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	y	Lining Material:	No Lining	

Comments:

Recommendations:

Scale:	nmendation	Position	[m] Code	Observation		MPEG	Photo	Grade
oouic.	Depth: m	i osition	[]	Observation		20	1 11010	Ordac
	S14							
		0.00	MH	Start node, manhole,	reference: S14	00:00:00	1	
		0.00	WL	Water level, 15% of th	ne vertical dimension	00:00:06		
		0.00	S01 DES	Settled deposits, fine,	15% cross-sectional area loss, start	00:00:06	2	
		4.76	WL	Water level, 10% of the	e vertical dimension	00:04:01		
		4.98	OJL	Open joint, large		00:04:06	3	1
•		5.21	F01 DES	Settled deposits, fine,	15% cross-sectional area loss, finish	00:04:11	4	3
		10.77	DES	Settled deposits, fine,	20% cross-sectional area loss	00:04:51	5	4
		11.56	S02 DES	Settled deposits, fine,	10% cross-sectional area loss, start	00:05:00	6	
	\	18.48	DER	Settled deposits, coar	se, 20% cross-sectional area loss	00:05:50	7	4
		20.08	F02 DES	Settled deposits, fine,	10% cross-sectional area loss, finish	00:08:21	8	3
		20.08	SA	Survey abandoned: U JETTING REQUIRED	NABLE TO SURVEY. EXTENSIVE	00:08:22	9	
		60.00		End of pipe				
	S13 Depth: m							
		Const	ruction Features		Miscellaneous	s Features		
			uctural Defects		Service & Operation		ons	

STR Grade SER No. Def

1.0

SER Peak

7.0

SER Mean

0.0

SER Total

40.0

STR Peak

STR Total

2.0

STR Mean

0.0

STR No. Def

SER Grade

4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
11	Upstream	S13X	Athgoe Newcastl	DBFL


1, 00:00:00, 0.00 m Start node, manhole, reference: S14

 $2,\,00:\!00:\!06,\,0.00\;\text{m}$ Settled deposits, fine, 15% cross-sectional area loss, start

3, 00:04:06, 4.98 m Open joint, large

4, 00:04:11, 5.21 m Settled deposits, fine, 15% cross-sectional area loss, finish

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
11	Upstream	S13X	Athgoe Newcastl	DBFL

5, 00:04:51, 10.77 m Settled deposits, fine, 20% cross-sectional area loss

 $6,\,00:05:00,\,11.56\;m$ Settled deposits, fine, 10% cross-sectional area loss, start

 $7,\,00{:}05{:}50,\,18.48\;\text{m}$ Settled deposits, coarse, 20% cross-sectional area loss

 $8,\,00:08:21,\,20.08\;m$ Settled deposits, fine, 10% cross-sectional area loss, finish

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
11	Upstream	S13X	Athgoe Newcastl	DBFL

9, 00:08:22, 20.08 m Survey abandoned, UNABLE TO SURVEY. EXTENSIVE JETTING REQUIRED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S13X

				•			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
11	2	26/04/22	10:22	Athgoe Newcastl	No Rain Or Snow	No	S13X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S13
Road:	Athgoe Inspected Length:		34.49 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	60.00 m	Downstream Node:	S14
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified	Not Specified		No Lining	
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining	

Comments:

Recom	mendation	is:					
Scale:	1:518	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m						
	S13						
		0.00			00 00 00		
		0.00	MH	Start node, manhole, reference: S13	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:06		
		6.49	WL	Water level, 15% of the vertical dimension	00:00:34		
		12.85	WL	Water level, 5% of the vertical dimension	00:01:00		
	7	28.47	CN	Connection other than junction at 10 o'clock, 150mm dia	00:01:55	2	
1							
•		29.08	CN	Connection other than junction at 3 o'clock, 150mm dia	00:02:06	3	
		33.20	WL	Water level, 15% of the vertical dimension	00:02:25		
		\					
		34.49	DES	Settled deposits, fine, 30% cross-sectional area loss	00:02:36	4	4
		\	0.4			_	
	1 1	\34.49	SA	Survey abandoned: UNABLE TO SURVEY. ECXTENSIVE JETTING REQUIRED.	00:02:38	5	
		60.00		End of pipe			
	S14						
	Depth: m						
		Construction	Features	Miscellaneous			
		Structural		Service & Operation			

STR Grade SER No. Def

1.0

SER Peak

5.0

STR Peak

STR Mean

0.0

STR Total

0.0

STR No. Def

SER Grade

4.0

SER Total

5.0

SER Mean 0.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
l 11	Downstream	S13X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S13

2, 00:01:55, 28.47 m Connection other than junction at 10 o'clock, 150mm dia

3, 00:02:06, 29.08 m Connection other than junction at 3 o'clock, 150mm dia

4, 00:02:36, 34.49 m Settled deposits, fine, 30% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
11	Downstream	S13X	Athgoe Newcastl	DBFL

5, 00:02:38, 34.49 m Survey abandoned, UNABLE TO SURVEY. ECXTENSIVE JETTING REQUIRED.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

				=				
Item No.	Insp. No.	Date Time		Client's Job Ref Weather		Pre Cleaned	PLR	
12	2	26/04/22 10:36		Athgoe Newcastl	No Rain Or Snow	No	S12X	
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID	
AAA		142-RN-104		Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S12
Road:	Athgoe	Inspected Length:	27.01 m	Upstream Pipe Depth:	
Location:	Road Total Length:		27.01 m	Downstream Node:	S13
Surface Type:	Asphalt Highway	Joint Length:	6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	y	Lining Material:	No Lining	

Comments:

Scale	1:233	Positio	n [m] Co	ode	Observ	/ation			N	IPEG	Photo	Grad
	Depth: m S13											
	013											
		0.00	. N	ΙΗ	Start no	ode, manhole,	reference: S13		00	0:00:00	1	
		0.00	. v	/L	Water I	evel, 0% of the	e vertical dimen	sion	00	0:00:05		
		0.00	. D	ES	Settled	deposits, fine,	5% cross-secti	onal area loss	00	80:00:	2	3
		1.49	. S01 D	ES	Settled	deposits, fine,	15% cross-sec	tional area los	ss, start 00	0:00:19	3	
†												
		18.65	F01 D	ES	Settled	deposits, fine,	15% cross-sec	tional area los	ss, finish 00):01:58	4	3
		22.60	D	ES	Settled	denosits fine	5% cross-secti	onal area loss	00):02:17	5	3
		22.00		_0	Settled	deposits, ilile,	3 /6 01055-5601	oriai area ioss	00	7.02.17	3	3
		27.01	M	HF	Finish r	node manhole	, reference: S1	2	00):03:01	6	
			. 1	•			, . 5.0.0	_	00		Č	
	S12 Depth: m											
		Con	struction Feat	ıres				Misc	ellaneous Fea	atures		
		St	ructural Defec	ts				Service &	Operational O	bservation		
rr n	lo. Def S	TR Peak	STR Mean	ST	R Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER 1	Total	SER Gra

2.0

0.0

40.0

0.0

0.0

1.0

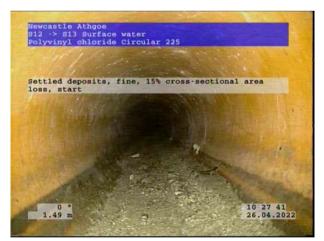
3

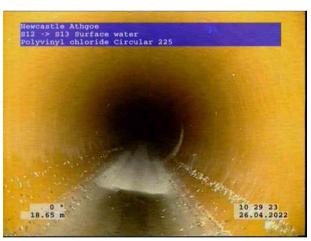
3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 26/04/2022 - S12X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref


 12
 Upstream
 \$12X
 Athgoe Newcastl
 DBFL


1, 00:00:00, 0.00 m Start node, manhole, reference: S13

 $2,\,00:00:08,\,0.00\;\text{m}$ Settled deposits, fine, 5% cross-sectional area loss

3, 00:00:19, 1.49 m Settled deposits, fine, 15% cross-sectional area loss, start

4, 00:01:58, 18.65 m Settled deposits, fine, 15% cross-sectional area loss, finish

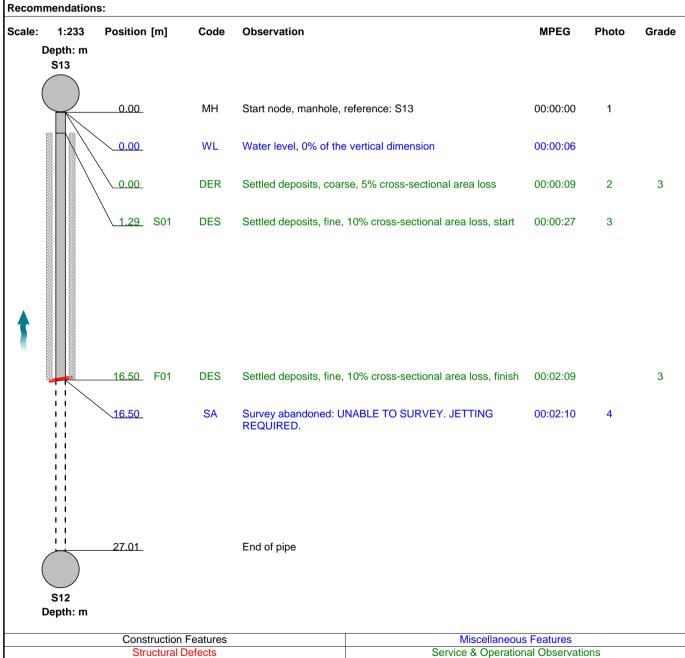
Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 26/04/2022 - S12X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
12	Upstream	S12X	Athgoe Newcastl	DBFL

 $5,\,00:02:17,\,22.60\;\text{m}$ Settled deposits, fine, 5% cross-sectional area loss

6, 00:03:01, 27.01 m Finish node, manhole, reference: S12


Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S12X

1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
12	1	26/04/22	10:29	Athgoe Newcastl	No Rain Or Snow	No	S12X
Ope	Operator Vehicle		icle	Camera	Preset Length	Legal Status	Alternative ID
AA	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S12
Road:	Athgoe	Inspected Length:	16.50 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	27.01 m	Downstream Node:	S13
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	y	Lining Material:	No Lining	

Comments:

STR Peak

STR Mean

0.0

STR Total

0.0

STR Grade

1.0

SER No. Def

SER Peak

2.0

SER Mean

0.0

SER Total

34.0

STR No. Def

SER Grade

3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 26/04/2022 - S12X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
12	Upstream	S12X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S13

 $2,\,00{:}00{:}09,\,0.00$ m Settled deposits, coarse, 5% cross-sectional area loss

3, 00:00:27, 1.29 m Settled deposits, fine, 10% cross-sectional area loss, start

4, 00:02:10, 16.50 m Survey abandoned, UNABLE TO SURVEY. JETTING REQUIRED.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S13.1X

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
13	1	26/04/22	11:13	Athgoe Newcastl	No Rain Or Snow	No	S13.1X
Ope	Operator Vehicle		Camera	Preset Length	Legal Status	Alternative ID	
A	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S13.1
Road:	Athgoe	Inspected Length:	0.13 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	0.13 m	Downstream Node:	S13
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:	
Use:	Culverted watercourse		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining	
Commonto.					

Comments:

Recommendations:

Scale:	1:50	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m						
	S13						
		0.00	МН	Start node, manhole, reference: S13	00:00:00	1	
A		0.00	WL	Water level, 0% of the vertical dimension	00:00:15		
		0.13	SA	Survey abandoned: UNABLE TO SURVEY. CULVERT	00:00:31	2	

	Con	struction Feat	ures			Misc	ellaneous Feat	ures	
Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def SER Peak SER Mean SER Total SER Gra				SER Grade
0	0.0	0.0	0.0	1.0 0 0.0 0.0 0.0					1.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S13.1X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 13
 Upstream
 \$13.1X
 Athgoe Newcastl
 DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S13

2, 00:00:31, 0.13 m Survey abandoned, UNABLE TO SURVEY. CULVERT

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - S14X

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
14	2	26/04/22	12:59	Athgoe Newcastl	No Rain Or Snow	Yes	S14X
Ope	Operator Vehicle		Camera	Preset Length	Legal Status	Alternative ID	
A.	AAA 142-RN-104		Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S14
Road:	Athgoe	Inspected Length:	118.39 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	118.39 m	Downstream Node:	S15
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Polyvinyl chloride	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining	

Comments:

Recon	Recommendations:											
Scale:		Position [m]	Code	Observation	MPEG	Photo	Grade					
	Depth: m S14	0.00	МН	Start node, manhole, reference: S14	00:00:00	1						
		0.00	WL	Water level, 5% of the vertical dimension	00:00:05							
		5.04	JDM	Joint displaced, medium	00:00:33	2	1/3					
		10.65	JDM	Joint displaced, medium	00:00:58	3	1/3					
		28.27	JDM	Joint displaced, medium	00:01:59	4	1/3					
		40.02	JDM	Joint displaced, medium	00:03:02	5	1/3					
		57.93	OJL	Open joint, large	00:04:31	6	1					
•		58.22	CN	Connection other than junction at 2 o'clock, 225mm dia	00:05:22	7						
		64.27	JDM	Joint displaced, medium	00:05:55	8, 9	1/3					
		75.93	JDM	Joint displaced, medium	00:08:17	10	1/3					
		93.70	JDM	Joint displaced, medium	00:09:27	11	1/3					
		99.53	JDL	Joint displaced, large	00:10:22	12	1/4					
		100.14	JNC	Junction, closed at 2 o'clock, 150mm dia	00:10:48	13						
		101.21	FM	Fractures, multiple from 9 o'clock to 3 o'clock	00:12:40	14	4/2					
	`	101.22	Н	Hole in drain or sewer from 11 o'clock to 1 o'clock	00:12:42	15	4					

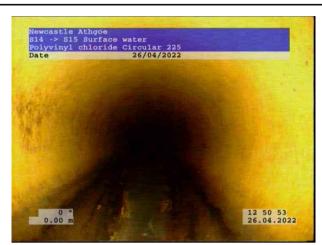
Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

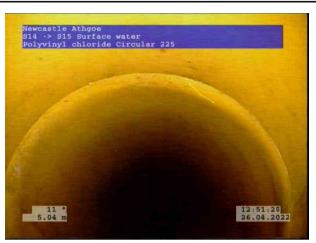
Section Inspection - 26/04/2022 - S14X

Item No.	n No. Insp. No. Date Time		Client's Job Ref	Weather	Pre Cleaned	PLR	
14	2	26/04/22	12:59	Athgoe Newcastl	No Rain Or Snow	Yes	S14X
Ope	Operator Vehicle		Camera	Preset Length	Legal Status	Alternative ID	
A/	AAA 142-RN-104		Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified	

Scale:	1:887	Position [m]	Code	Observation	MPEG	Photo	Grade
		104.45	DES	Settled deposits, fine, 5% cross-sectional area loss	00:13:46	16	3
		104.45	D	Deformed sewer or drain, 5%	00:13:55	17	1/2
(106.15	JDM	Joint displaced, medium	00:15:58	18	1/3
	S15	118.39	GYF	Finish node, gully, reference: S15	00:23:51	19	

Depth: m


	Con	struction Feat	ures			Misc	ellaneous Feat	tures	
	S	tructural Defec	ts		Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
13	160.0	0.0	172.0	4.0	12	5.0	0.0	25.0	4.0


Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
14	Downstream	S14X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S14

2, 00:00:33, 5.04 m Joint displaced, medium

3, 00:00:58, 10.65 m Joint displaced, medium

4, 00:01:59, 28.27 m Joint displaced, medium

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X

Item No.Inspection DirectionPLRClient`s Job RefContractor`s Job Ref14DownstreamS14XAthgoe NewcastlDBFL

5, 00:03:02, 40.02 m Joint displaced, medium

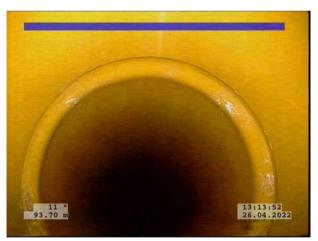
6, 00:04:31, 57.93 m Open joint, large

7, 00:05:22, 58.22 m Connection other than junction at 2 o'clock, 225mm dia

8, 00:05:55, 64.27 m Joint displaced, medium

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X


Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
14	Downstream	S14X	Athgoe Newcastl	DBFL

9, 00:05:55, 64.27 m Joint displaced, medium

10, 00:08:17, 75.93 m Joint displaced, medium

11, 00:09:27, 93.70 m Joint displaced, medium

12, 00:10:22, 99.53 m Joint displaced, large

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X


Item No.Inspection DirectionPLRClient`s Job RefContractor`s Job Ref14DownstreamS14XAthgoe NewcastlDBFL

13, 00:10:48, 100.14 m Junction, closed at 2 o'clock, 150mm dia

14, 00:12:40, 101.21 m Fractures, multiple from 9 o'clock to 3 o'clock

15, 00:12:42, 101.22 m Hole in drain or sewer from 11 o'clock to 1 o'clock

16, 00:13:46, 104.45 m Settled deposits, fine, 5% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X

Item No.Inspection DirectionPLRClient's Job RefContractor's Job Ref14DownstreamS14XAthgoe NewcastlDBFL

17, 00:13:55, 104.45 m Deformed sewer or drain, 5%

18, 00:15:58, 106.15 m Joint displaced, medium

19, 00:23:51, 118.39 m Finish node, gully, reference: S15

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

				•				
Item No.	Insp. No.	Date Time		Client`s Job Ref	Weather	Pre Cleaned	PLR	
14	1	26/04/22	11:50	Athgoe Newcastl	No Rain Or Snow	No	S14X	
Ope	Operator		icle	Camera	Preset Length	Legal Status	Alternative ID	
A	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S14	
Road:	Athgoe	Inspected Length:	57.69 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	118.39 m	Downstream Node:	S15	
Surface Type:	Asphalt Highway	Joint Length:	6.00 m	Downstream Pipe Depth:		
Use:	Surface water		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Polyvinyl chloride		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining		

Comments:

	nmendatio											
Scale:	-		n [m] Co	ode	Observ	ation			N	MPEG	Photo	Grade
	Depth: m S14											
		0.00	. N	IH	Start no	ode, manhole,	reference: S14	ı	00	0:00:00	1	
		0.00	_ V	/L	Water le	evel, 10% of the	ne vertical dim	ension	00	0:00:05		
		0.61	_ D	ES	Settled	deposits, fine	, 10% cross-se	ctional area los	ss 00	0:00:14		3
		5.62	_ V	/L	Water le	evel, 5% of the	e vertical dime	nsion	00	0:01:01		
		10.50	_ J[M	Joint dis	splaced, medi	um		00):01:26	2	1/3
1		57.69	_ DI	ΞS	Settled	deposits, fine	, 20% cross-se	ctional area los	ss 00):05:55	3	4
V		57.69	. 8	A	Survey	abandoned: N	IEEDS JETTIN	G	00):05:58	4	
	S15 Depth: m	118.39			End of p	pipe						
			struction Feat						ellaneous Fea		one	
STR N	lo. Def S	TR Peak	STR Mean		R Total	STR Grade	SER No. Def		Operational C SER Mean			SER Grade
		1.0	0.0		1.0	1.0		5.0	0.0	0		4.0

3

1.0

5.0

0.0

9.0

0.0

1.0

4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 26/04/2022 - S14X

 Item No.
 Inspection Direction
 PLR
 Client`s Job Ref
 Contractor`s Job Ref

 14
 Downstream
 \$14X
 Athgoe Newcastl
 DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S14

2, 00:01:26, 10.50 m Joint displaced, medium

3, 00:05:55, 57.69 m Settled deposits, fine, 20% cross-sectional area loss

4, 00:05:58, 57.69 m Survey abandoned, NEEDS JETTING

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - S15X

1				=				
Item No.	Insp. No.	Date Time		Date Time Client's Job Ref Weather		Pre Cleaned	PLR	
15	1	27/04/22	9:40	Athgoe Newcastl	No Rain Or Snow	No	S15X	
Ope	Operator		icle	Camera	Preset Length	Legal Status	Alternative ID	
AAA		142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified	

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S15	
Road:	Athgoe	Inspected Length:	13.45 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	13.45 m	Downstream Node:	S16	
Surface Type:	Asphalt Highway Joint Length:		0.90 m	Downstream Pipe Depth:		
Use:	Surface water	1	Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition surve	ey .	Lining Material:	No Lining		
Commenter						

Comments:

le: 1:116 Depth: m	Position [m]	Code	Observation	MPEG	Photo	Grade
S15						
	0.00_	МН	Start node, manhole, reference: S15	00:00:00	1	
	0.00	WL	Water level, 5% of the vertical dimension	00:00:06		
	1.94	JDM	Joint displaced, medium	00:00:36	2	1/3
	2.97	JDM	Joint displaced, medium	00:00:44	3	1/3
	3.95 S01	JDM	Joint displaced, medium, start	00:00:53	4	
	13.45_ F01	JDM	Joint displaced, medium, finish	00:02:05		1/3
S16	13.45	MHF	Finish node, manhole, reference: S16: BURIED	00:02:06	5	

	Cor	istruction Feat	ures			IVIISC	ellaneous Feat	tures	
	S	tructural Defec	ts		Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
3	2.0	0.0	12.0	1.0	3	4.0	0.0	24.0	3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S15X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
15	Downstream	S15X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S15

2, 00:00:36, 1.94 m Joint displaced, medium

3, 00:00:44, 2.97 m Joint displaced, medium

4, 00:00:53, 3.95 m Joint displaced, medium, start

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 27/04/2022 - S15X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
15	Downstream	S15X	Athgoe Newcastl	DBFL

5, 00:02:06, 13.45 m Finish node, manhole, reference: S16, BURIED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - S17X

Item No. Insp. No. Date		Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
16	2	27/04/22	14:59	Athgoe Newcastl	No Rain Or Snow	Yes	S17X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A/	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	S17
Road:	Athgoe	Inspected Length:	7.56 m	Upstream Pipe Depth:	
Location:	Footway	Total Length:	7.62 m	Downstream Node:	S18
Surface Type:	Concrete Footway Joint Length:		0.90 m	Downstream Pipe Depth:	
Use:	Surface water	Surface water		Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified	Not Specified		No Lining	
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining	

Scale:		Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m S18						
		0.00	МН	Start node, manhole, reference: S18	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:05		
		0.00	REM	General remark: SIGNS OF A DYE	00:00:06	2	
		0.11 S02	JDM	Joint displaced, medium, start	00:00:09	3	
†		<u>4.36</u>	CL	Crack, longitudinal at 1 o'clock	00:00:31	4	2/2
		5.18	CL	Crack, longitudinal at 1 o'clock	00:00:40	5	2/2
		<u>7.55</u> F02	JDM	Joint displaced, medium, finish	00:01:12	6	1/3
	\$17	7.56	MHF	Finish node, manhole, reference: S17: BURIED	00:01:18	7, 8	
	Depth: m						

STR Grade SER No. Def

2.0

SER Peak

3.0

STR Total

28.0

STR Mean

STR No. Def

SER Grade

3.0

SER Total

18.0

SER Mean

0.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S17X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
16	Upstream	S17X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S18

2, 00:00:06, 0.00 m General remark, SIGNS OF A DYE

3, 00:00:09, 0.11 m Joint displaced, medium, start

4, 00:00:31, 4.36 m Crack, longitudinal at 1 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S17X


Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
16	Upstream	S17X	Athgoe Newcastl	DBFL

5, 00:00:40, 5.18 m Crack, longitudinal at 1 o'clock

6, 00:01:12, 7.55 m Joint displaced, medium, finish

7, 00:01:18, 7.56 m Finish node, manhole, reference: S17, BURIED

8, 00:01:18, 7.56 m Finish node, manhole, reference: S17, BURIED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
17	1	27/04/22	15:04	Athgoe Newcastl	No Rain Or Snow	No	S18X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AAA		142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S18
Road:	Hazelhatch Road	Inspected Length:	81.93 m	Upstream Pipe Depth:	
Location:	Footway	Total Length:	81.93 m	Downstream Node:	S19
Surface Type:	Concrete Footway Joint Length:		0.90 m	Downstream Pipe Depth	:
Use:	Surface water	Surface water		Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining	

Comments:

Recom	nmendation	s:					
Scale:		Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m S18	0.00	МН	Start node, manhole, reference: S18	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:05		
		1.48	CXI	Connection defective, connecting pipe is intruding at 3 o'clock, 150mm dia, intrusion: 5%	00:00:11	2	3
		4.46	FL	Fracture, longitudinal at 1 o'clock	00:00:25	3	3/2
		5.37	FL	Fracture, longitudinal at 12 o'clock	00:00:34	4	3/2
ì		7.99	CL	Crack, longitudinal at 12 o'clock	00:00:50	5	2/2
•		8.30	Н	Hole in drain or sewer from 11 o'clock to 1 o'clock	00:00:59	6	4
		8.53	CN	Connection other than junction at 2 o'clock, 150mm dia	00:01:02	7	
		14.06	RF	Roots, fine	00:01:35	8	2
		15.19	RF	Roots, fine	00:01:44	9	2
		16.08	RFJ	Roots, fine at joint	00:01:52	10	2
		18.07	RMJ	Roots, mass at joint, 10% cross-sectional area loss	00:02:03	11	3
		21.12	RFJ	Roots, fine at joint	00:02:29	12	2
		23.12	RFJ	Roots, fine at joint	00:02:42	13	2
		24.11 S01	RFJ	Roots, fine at joint, start	00:02:49	14	

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - S18X

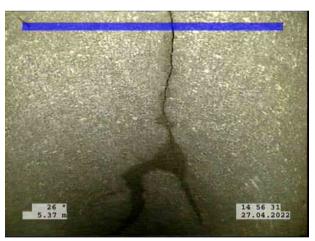
1				=			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
17	1	27/04/22	15:04	Athgoe Newcastl	No Rain Or Snow	No	S18X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
AAA		142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Scale:	1:305	Position [m]	Code	Observ	ation			M	IPEG	Photo	Grade
		29.05	JDM	Joint di	splaced, mediu	ım		00	:03:16	15	1/3
		48.37	JDM	Joint di	splaced, mediu	um		00	:05:01	16	1/3
		50.93	RMJ	Roots,	mass at joint, 1	10% cross-sect	tional area loss	00	:05:19	17	3
*		57.22	RMJ	Roots,	mass at joint, 1	5% cross-sect	tional area loss	00	:05:53	18	3
		62.74	CXI	Connec	ction defective, 150mm dia, ir	connecting pip	pe is intruding a	at 2 00	:06:20	19	4
		62.94	FC	Fractur	e, circumferen	tial from 12 o'c	lock to 12 o'clo	ck 00	:06:28	20	3/2
		81.93 F01	RFJ	Roots,	fine at joint, fin	ish		00	:08:15	21	2
	S19 Depth: m	81.93	MHF	Finish r MANHO	node, manhole DLE	, reference: S1	9: SILT TRAP	00	:08:17	22	
		Construction	on Features				Mico	ellaneous Fea	atures		
		Structura	I Defects				Service &	Operational O		ons	
STR No.				R Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER	Total	SER Grade
7		90.0 0 Surface Water 2		212.0	4.0	17	6.0	0.0	90	.U	4.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
17	Downstream	S18X	Athgoe Newcastl	DBFL


1, 00:00:00, 0.00 m Start node, manhole, reference: S18

2, 00:00:11, 1.48 m Connection defective, connecting pipe is intruding at 3 o'clock, 150mm dia, intrusion: 5%

3, 00:00:25, 4.46 m Fracture, longitudinal at 1 o'clock

4, 00:00:34, 5.37 m Fracture, longitudinal at 12 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X


Item No.Inspection DirectionPLRClient`s Job RefContractor`s Job Ref17DownstreamS18XAthgoe NewcastlDBFL

5, 00:00:50, 7.99 m Crack, longitudinal at 12 o'clock

 $6,\,00{:}00{:}59,\,8.30$ m Hole in drain or sewer from 11 o'clock to 1 o'clock

7, 00:01:02, 8.53 m Connection other than junction at 2 o'clock, 150mm dia

8, 00:01:35, 14.06 m Roots, fine

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
17	Downstream	S18X	Athgoe Newcastl	DBFL

9, 00:01:44, 15.19 m Roots, fine

10, 00:01:52, 16.08 m Roots, fine at joint

 $11,\,00:02:03,\,18.07\;\mathrm{m}$ Roots, mass at joint, 10% cross-sectional area loss

12, 00:02:29, 21.12 m Roots, fine at joint

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X

 Item No.
 Inspection Direction
 PLR
 Client`s Job Ref
 Contractor`s Job Ref

 17
 Downstream
 \$18X
 Athgoe Newcastl
 DBFL

13, 00:02:42, 23.12 m Roots, fine at joint

14, 00:02:49, 24.11 m Roots, fine at joint, start

15, 00:03:16, 29.05 m Joint displaced, medium

16, 00:05:01, 48.37 m Joint displaced, medium

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X

Item No.Inspection DirectionPLRClient's Job RefContractor's Job Ref17DownstreamS18XAthgoe NewcastlDBFL

17, 00:05:19, 50.93 m Roots, mass at joint, 10% cross-sectional area loss

18, 00:05:53, 57.22 m Roots, mass at joint, 15% cross-sectional area loss

19, 00:06:20, 62.74 m Connection defective, connecting pipe is intruding at 2 o'clock, 150mm dia, intrusion: 20%

20, 00:06:28, 62.94 m Fracture, circumferential from 12 o'clock to 12 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - S18X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
17	Downstream	S18X	Athgoe Newcastl	DBFL

21, 00:08:15, 81.93 m Roots, fine at joint, finish

22, 00:08:17, 81.93 m Finish node, manhole, reference: S19, SILT TRAP MANHOLE

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 28/04/2022 - S20X

				•			
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
18	1	28/04/22	11:22	Athgoe Newcastl	No Rain Or Snow	Yes	S20X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	S20
Road:	Hazelhatch Road	Inspected Length:	71.19 m	Upstream Pipe Depth:	
Location:	Fields, farmland etc	Total Length:	71.19 m	Downstream Node:	S21
Surface Type:	Grass	Joint Length:		Downstream Pipe Depth:	
Use:	Surface water		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	300 mm	
Flow Control:	No flow control	No flow control		Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surv	rey	Lining Material:	No Lining	

Comments:

Recon	nmendatior	ns:						
Scale:	1:614	Position [m]	Code	Observation		MPEG	Photo	Grade
	Depth: m S20							
	320							
		0.00				00.00.00		
		0.00	MH	Start node, manhole,	reference: S20	00:00:00	1	
		0.00	WL	Water level, 5% of the	vertical dimension	00:00:05		
		<u> </u>	***	vator lovel, 670 or the	vortiour dimonotori	00.00.00		
		26.13	RFJ	Roots, fine at joint		00:01:35	2	2
				,				
		28.11 S01	RFJ	Roots, fine at joint, sta	art	00:01:48	3	
		_						
▼		32.68	RMJ	Roots, mass at joint, 1	5% cross-sectional area loss	00:02:13	4	3
		38.28 F01	RFJ	Roots, fine at joint, fin	ish	00:02:44		2
		47.78	Н	Holo in drain or cowor	from 11 o'clock to 1 o'clock	00:03:57	5	4
		47.70	- ''	Tible III draiii or sewei	HOIT I I O CIOCK TO T O CIOCK	00.03.37	3	4
		59.19	WL	Water level, 10% of th	e vertical dimension	00:04:48		
		71.19	MHF	Finish mode meant sta	reference: CO4, DUDIED, NO	00:06:21	6, 7	
		71.19	IVIHE	COVER. GULLY CON	, reference: S21: BURIED. NO INECTED	00:06:21	6, 7	
	S21							
	Depth: m							
		Construction				eous Features		
		Structural I	Defects		Service & Opera	ational Observation	ons	

STR Grade SER No. Def

4.0

SER Peak

5.0

SER Mean

0.0

STR Peak

STR Mean

0.0

STR Total

80.0

STR No. Def

SER Grade

4.0

SER Total

16.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 28/04/2022 - S20X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 18
 Downstream
 \$20X
 Athgoe Newcastl
 DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: S20

2, 00:01:35, 26.13 m Roots, fine at joint

3, 00:01:48, 28.11 m Roots, fine at joint, start

4, 00:02:13, 32.68 m Roots, mass at joint, 15% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 28/04/2022 - S20X

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
18	Downstream	S20X	Athgoe Newcastl	DBFL

 $5,\,00{:}03{:}57,\,47.78$ m Hole in drain or sewer from 11 o'clock to 1 o'clock

6, 00:06:21, 71.19 m Finish node, manhole, reference: S21, BURIED. NO COVER. GULLY CONNECTED

7, 00:06:21, 71.19 m Finish node, manhole, reference: S21, BURIED. NO COVER. GULLY CONNECTED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project

Project Name: Athgoe Newcastle Foul Water 26-04-22

Project Description: CCTV Survey

Project Number: CES 9404

Project Status: Complete
Project Date: 26/04/2022

Inspection Standard: MSCC5 Sewers & Drainage GB (SRM5 Scoring)

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Table of Contents

Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Project Information	P-1
Scoring Summary	P-3
Section Profile	P-4
Project Summary	P-5
Section Item 1: SN99285403 > SN99285504 (SN99285403X)	1
Section Item 2: SN99285504 > SN99285502 (SN99285504X)	9
Section Item 3: SN99284403 > SN99285403 (SN99284403X)	13
Section Item 4: SN99285502 > SN99285602 (SN99285502X)	19

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Information

Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Client

Company: DBFL

Description:Consulting EngineersContact:Conor O LoughlinDepartment:Civil EngineerStreet:Ormond House

Town or City: Upper Ormond Quay

 County:
 Dublin 7

 Post Code:
 D07W704

 Phone:
 01 - 400 4000

 Mobile:
 085 - 169 8141

Email: conor.oloughlin@dbfl.ie

Company: Cairn Homes

Description: Planning Investigation Works

Contact: Conor O'Loughlin
Department: Civil Engineer
Street: Athgoe Road
Town or City: Newcastle
County: Dublin
Post Code: D22XV29

Phone: 01 - 400 4000

Email: conor.oloughlin@dbfl.ie

Contractor

CES Environmental Services Ltd.

Description: CCTV Survey **Contact:** Kieran Murphy

Department: CCTV & Rehabilitation
Street: Tracklands Business Park
Clonroad More, Ennis

County: Clare
Post Code: V95A598
Phone: 065 - 6866850
Mobile: 085 - 2521556

Email: kmurphy@cesenvironmental.ie

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Information

Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Project Drawing, Page 'Athgoe Newcastle Foul Water DBFL 260422'

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Scoring Summary

Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Structural Defects

Section	PLR	Grade	Description

All inspected pipes are in an acceptable structural condition (< grade 3).

Service / Operational Condition

- Grade 3: Best practice suggests consideration should be given to maintenance activities in the medium term.
- Grade 4: Best practice suggests consideration should be given to maintenance activity to avoid potential blockages.
- Grade 5: Best practice suggests that this pipe is at a high risk of backing up or causing flooding.

Section	PLR	Grade	Description
1	SN99285403X	4	Settled deposits, fine, 30% cross-sectional area loss
2	SN99285504X	5	Ingress of gravel from 4 o'clock to 8 o'clock, 30% cross-sectional area loss
3	SN99284403X	3	Multiple defects
4	SN99285502X	4	Settled deposits, hard or compacted, 20% cross-sectional area loss

Abandoned Surveys

Section	PLR	Description
1	SN99285403X	Survey abandoned
1	SN99285403X	Survey abandoned
1	SN99285403X	Survey abandoned
4	SN99285502X	Survey abandoned

Information

These scoring summaries are based on the SRM grading from the WRc.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Profile

Dysiast Name	Drainet Number	Drainet Date
Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Circul	Circular, 225 mm													
Item No.	Upstream Node	Downstream Node	Date	Road	Material	Total Length	Inspected Length							
2	SN99285504	SN99285502	27/04/2022	Athgoe	Concrete	41.74 m	41.74 m							
3	SN99284403	SN99285403	27/04/2022	Athgoe	Concrete	68.00 m	68.00 m							

Total: 2 Inspections x Circular 225 mm = 109.74 m Total Length and 109.74 m Inspected Length

Total: 2 Inspections = 109.74 m Total Length and 109.74 m Inspected Length

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Project Summary

Project Name	Project Number	Project Date
Athgoe Newcastle Foul Water 26-04-22	CES 9404	26/04/2022

Insp	nspection Summary													
Pipe No.	Insp. No.	Upstream Node	Downstream Node	Dir.	Operator	Insp. Date	Insp. Time	Str	Ser	Final Observation	Length			
1	1	SN99285403	SN99285504	DS	Aaa	27/04/2022	10:25	1	4	SA, GRAVEL IN LINE. ECXTENSIVE JETTING REC	19.19 m			
1	2	SN99285403	SN99285504	US	Aaa	26/04/2022	16:37	1	4	INGG	12.66 m			
1	3	SN99285403	SN99285504	US	Aaa	26/04/2022	15:21	1	3	SA, unable to survey. jetting required.	7.77 m			
2	1	SN99285504	SN99285502	US	Aaa	27/04/2022	12:29	1	5	MHF, MANHOLE FULL OF GRAVEL	41.74 m			
3	1	SN99284403	SN99285403	US	Aaa	27/04/2022	10:32	2	3	MHF	68.00 m			
4	1	SN99285502	SN99285602	DS	Aaa	27/04/2022	13:04	2	4	SA, settled depositts. cutting required	47.96 m			
			•	•		•				Total:	197.33 m			

Defe	ect S	ummary								C	CTV) Praina	ge Sui	rvey O	bserva	ation C	ount							
		•			Gene	eral				5	Structu	ıral Co	nditio	n			Service Condition					Mi	isc	
Sect.	Insp. No.	Upstream Node	Downstream Node	Insp. Length (m)	No. Grade 4/5 Obs.	Survey Abandoned	Camera Under Water	Cracks	Fractures	Broken	Deformed	Collapsed	Holes	Surface Damage	Displaced Joints	Open Joints	Roots	Infiltration	Encrustation	Silt	Grease	Obstruction	Water Level	Line Deviates
1	1	SN99285403	SN99285504	19.2		1												1	1	3			4	
1	2	SN99285403	SN99285504	12.7		1												2		1			1	
1	3	SN99285403	SN99285504	7.8		1													1				1	
2	1	SN99285504	SN99285502	41.7														2	3				4	
3	1	SN99284403	SN99285403	68.0				1											9		1		3	
4	1	SN99285502	SN99285602	48.0		1		1										3	4				1	
	•		Total:	197.3		4		2										8	18	4	1		14	

Athgoe Newcastle Foul Water 26-04-22

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - SN99285403X

Item No.	Insp. No.	Date	Time	Client`s Job Ref Weather		Pre Cleaned	PLR		
1	3	27/04/22	10:25	Athgoe Newcastl	No Rain Or Snow	Yes	SN99285403X		
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID		
A.	AAA 142-RN-104		N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified		

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	SN99285403
Road:	Athgoe	Inspected Length:	19.19 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	19.19 m	Downstream Node:	SN99285504
Surface Type:	Asphalt Highway	Joint Length:	6.00 m	Downstream Pipe Depth:	
Use:	Foul		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	ey .	Lining Material:	No Lining	
Cammanta.					

Comments:

Scale:	1:166	Position [m]	Code	Observation	MPEG	Photo	Grade
	9285403						
		0.00	МН	Start node, manhole, reference: SN99285403	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:07	2	
		0.00 S01	DES	Settled deposits, fine, 5% cross-sectional area loss, start	00:00:09		
		2.13	DEEJ	Attached deposits, encrustation at joint from 11 o'clock to 2 o'clock, 5% cross-sectional area loss	00:00:27	3	3
		2.13	IS	Infiltration, seeping at 1 o'clock	00:00:29	4	
↓							
		15.38	WL	Water level, 10% of the vertical dimension	00:01:55		
		16.77	WL	Water level, 15% of the vertical dimension	00:02:07		
		17.57_	WL	Water level, 20% of the vertical dimension	00:02:16		
		19.19	DES	Settled deposits, fine, 30% cross-sectional area loss	00:02:37	5	4
8		<u>19.19</u> F01	DES	Settled deposits, fine, 5% cross-sectional area loss, finish	00:02:39		3
		19.19	SA	Survey abandoned: GRAVEL IN LINE. ECXTENSIVE JETTING REQUIRED	00:02:42	6	

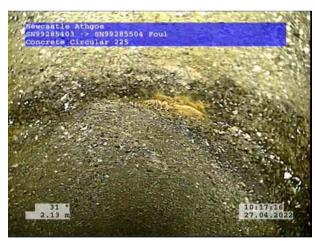
	Cor	istruction Feati	ures			Misc	ellaneous Feat	tures	
	S	tructural Defec	ts		Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def	SER Peak	SER Mean	SER Total	SER Grade
0 0.0 0.0 0.0 1.0 3 5.0 0.0 47					47.0	4.0			

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - SN99285403X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 1
 Downstream
 SN99285403X
 Athgoe Newcastl
 DBFL


1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285403

2, 00:00:07, 0.00 m Water level, 5% of the vertical dimension

3, 00:00:27, 2.13 m
Attached deposits, encrustation at joint from 11 o'clock to 2 o'clock, 5% cross-sectional area loss

4, 00:00:29, 2.13 m Infiltration, seeping at 1 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
1	Downstream	SN99285403X	Athgoe Newcastl	DBFL

5, 00:02:37, 19.19 m Settled deposits, fine, 30% cross-sectional area loss

6, 00:02:42, 19.19 m Survey abandoned, GRAVEL IN LINE. ECXTENSIVE JETTING REQUIRED

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - SN99285403X

Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
1	2	26/04/22	16:37	Athgoe Newcastl	No Rain Or Snow	Yes	SN99285403X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A/	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	SN99285403	
Road:	Athgoe	Inspected Length:	12.66 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	19.19 m	Downstream Node:	SN99285504	
Surface Type:	Asphalt Highway Joint Length:		6.00 m	Downstream Pipe Depth:		
Use:	Foul		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining		
C	•		•			

Comments:

Recommendations:

Recomn	nendation	is:						
Scale:	1:166	Position [m] Code	Observation		MPEG	Photo	Grade
	epth: m 99285504							
(0.00	МН	Start node, manhole,	reference: SN99285504	00:00:00	1	
		0.00	WL	Water level, 5% of the	vertical dimension	00:00:05		
		4.11	S01 INGG	Ingress of gravel from cross-sectional area lo	5 o'clock to 7 o'clock, 5% oss, start	00:00:32	2	
†		8.24	DES	Settled deposits, fine,	15% cross-sectional area loss	00:01:21	3	3
		12.51	DEZ	Attached deposits, oth cross-sectional area lo	ner from 5 o'clock to 7 o'clock, 15% oss: stones.	00:03:04	4	3
		12.66	SA	Survey abandoned: ur required	nable to survey. ecxtensive jetting	00:03:09	5	
		12.66	F01 INGG	Ingress of gravel from cross-sectional area lo	5 o'clock to 7 o'clock, 5% oss, finish	00:02:57	6	3
(19.19		End of pipe				
	99285403 Pepth: m							
				,				
			uction Features		Miscellaneo		one	
		Struc	ctural Defects		Service & Operation	unai Observati	ULIS	

STR Grade SER No. Def

1.0

SER Peak

6.0

SER Mean

0.0

SER Total

40.0

STR Peak

STR Total

0.0

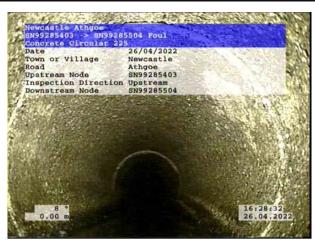
STR Mean

0.0

STR No. Def

SER Grade

4.0



Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 26/04/2022 - SN99285403X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 1
 Upstream
 SN99285403X
 Athgoe Newcastl
 DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285504

2, 00:00:32, 4.11 m Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss, start

3, 00:01:21, 8.24 m Settled deposits, fine, 15% cross-sectional area loss

4, 00:03:04, 12.51 m
Attached deposits, other from 5 o'clock to 7 o'clock, 15% cross-sectional area loss, stones.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 26/04/2022 - SN99285403X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 1
 Upstream
 SN99285403X
 Athgoe Newcastl
 DBFL

5, 00:03:09, 12.66 m Survey abandoned, unable to survey. ecxtensive jetting required

6, 00:02:57, 12.66 m Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss, finish

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 26/04/2022 - SN99285403X

Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
1	1	26/04/22	15:21	Athgoe Newcastl	No Rain Or Snow	No	SN99285403X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A/	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	SN99285403	
Road:	Athgoe	Inspected Length:	7.77 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	19.19 m	Downstream Node:	SN99285504	
Surface Type:	Asphalt Highway	Joint Length:	6.00 m	Downstream Pipe Depth:		
Use:	Foul		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining		
Commenter						

Position [m]	Code	Observation	MPEG	Photo	Grade
0.00_	МН	Start node, manhole, reference: SN99285504	00:00:00	1	
0.00	WL	Water level, 5% of the vertical dimension	00:00:05		
4.72	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss	00:00:57	2	3
5.34	DEF	Attached deposits, fouling from 5 o'clock to 7 o'clock, 10% cross-sectional area loss	00:01:10	3	3
7.77	SA	Survey abandoned: unable to survey, jetting required.	00:01:34	4	
19.19		End of pipe			
	0.00 4.72 5.34 7.77	0.00 WL 4.72 DEEJ 5.34 DEF 7.77 SA	0.00 WL Water level, 5% of the vertical dimension 4.72 DEEJ Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss 5.34 DEF Attached deposits, fouling from 5 o'clock to 7 o'clock, 10% cross-sectional area loss 7.77 SA Survey abandoned: unable to survey. jetting required.	O.00. WL Water level, 5% of the vertical dimension 00:00:05 4.72. DEEJ Attached deposits, encrustation at joint from 12 o'clock to 12 00:00:57 o'clock, 5% cross-sectional area loss 5.34. DEF Attached deposits, fouling from 5 o'clock to 7 o'clock, 10% 00:01:10 cross-sectional area loss 7.77. SA Survey abandoned: unable to survey. jetting required. 00:01:34	0.00. WL Water level, 5% of the vertical dimension 00:00:05 4.72. DEEJ Attached deposits, encrustation at joint from 12 o'clock to 12 00:00:57 2 o'clock, 5% cross-sectional area loss 5.34. DEF Attached deposits, fouling from 5 o'clock to 7 o'clock, 10% 00:01:10 3 cross-sectional area loss 7.77. SA Survey abandoned: unable to survey, jetting required. 00:01:34 4

STR Grade SER No. Def

1.0

SER Peak

2.0

SER Mean

0.0

SER Total

4.0

STR Peak

STR Total

0.0

STR Mean

0.0

STR No. Def

SER Grade

3.0

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
1	Upstream	SN99285403X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285504

2, 00:00:57, 4.72 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss

3, 00:01:10, 5.34 m Attached deposits, fouling from 5 o'clock to 7 o'clock, 10% cross-sectional area loss

 $4,\,00\text{:}01\text{:}34,\,7.77\;\text{m}$ Survey abandoned, unable to survey, jetting required.

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - SN99285504X

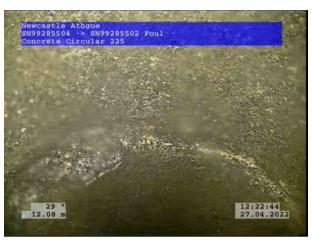
Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
2	2	27/04/22	12:29	Athgoe Newcastl	No Rain Or Snow	Yes	SN99285504X
Operator		Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	Not Specified	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	SN99285504	
Road:	Athgoe	Inspected Length:	41.74 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	41.74 m	Downstream Node:	SN99285502	
Surface Type:	Asphalt Highway	It Highway Joint Length:		Downstream Pipe Depth:		
Use:	Foul		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition survey		Lining Material:	No Lining		
Commonts:			-			

Comments:

ale:	1:360	Position [m]	Code	Observation	MPEG	Photo	Grade
	epth: m 9285502						
		0.00	МН	Start node, manhole, reference: SN99285502	00:00:00	1	
		0.00	WL	Water level, 20% of the vertical dimension	00:00:07		
		0.47	WL	Water level, 30% of the vertical dimension	00:00:14		
		1.39	WL	Water level, 20% of the vertical dimension	00:00:23		
		5.21	WL	Water level, 10% of the vertical dimension	00:00:52		
A		12.08	DEEJ	Attached deposits, encrustation at joint from 7 o'clock to 11 o'clock, 5% cross-sectional area loss	00:01:24	2	3
		30.18	DEEJ	Attached deposits, encrustation at joint from 5 o'clock to 7 o'clock, 5% cross-sectional area loss	00:02:55	3	3
		33.01	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss	00:03:10	4	3
		36.77	DEC	Settled deposits, hard or compacted, 5% cross-sectional area loss	00:03:43	5	3
		37.80	JN	Junction at 12 o'clock, 100mm dia	00:03:54	6	
		37.84	DEC	Settled deposits, hard or compacted, 15% cross-sectional area loss	00:04:06	7	3
		39.61	INGG	Ingress of gravel from 5 o'clock to 7 o'clock, 10% cross-sectional area loss	00:04:19	8	3
		41.08	INGG	Ingress of gravel from 4 o'clock to 8 o'clock, 30% cross-sectional area loss	00:04:30	9, 10	5
	9285504 epth: m	41.74	MHF	Finish node, manhole, reference: SN99285504: MANHOLE FULL OF GRAVEL	00:04:49	11	

	Construction Features					Miscellaneous Features			
Structural Defects					Service & Operational Observations				
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def SER Peak SER Mean SER Total SER				SER Grade
0	0.0	0.0	0.0	1.0	7 10.0 0.0 24.0 5.0				



Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
2	Upstream	SN99285504X	Athgoe Newcastl	DBFL

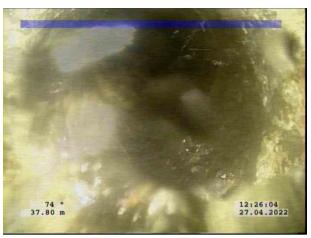
1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285502

2, 00:01:24, 12.08 m Attached deposits, encrustation at joint from 7 o'clock to 11 o'clock, 5% cross-sectional area loss

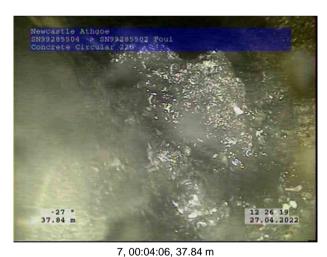
3, 00:02:55, 30.18 m Attached deposits, encrustation at joint from 5 o'clock to 7 o'clock, 5% cross-sectional area loss

4, 00:03:10, 33.01 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie


Section Pictures - 27/04/2022 - SN99285504X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref


 2
 Upstream
 SN99285504X
 Athgoe Newcastl
 DBFL

5, 00:03:43, 36.77 m Settled deposits, hard or compacted, 5% cross-sectional area loss

6, 00:03:54, 37.80 m Junction at 12 o'clock, 100mm dia

Settled deposits, hard or compacted, 15% cross-sectional area loss

8, 00:04:19, 39.61 m Ingress of gravel from 5 o'clock to 7 o'clock, 10% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
2	Upstream	SN99285504X	Athgoe Newcastl	DBFL

9, 00:04:30, 41.08 m Ingress of gravel from 4 o'clock to 8 o'clock, 30% cross-sectional area loss

10, 00:04:30, 41.08 m Ingress of gravel from 4 o'clock to 8 o'clock, 30% cross-sectional area loss

11, 00:04:49, 41.74 m Finish node, manhole, reference: SN99285504, MANHOLE FULL OF GRAVEL

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - SN99284403X

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
3	1	27/04/22	10:32	Athgoe Newcastl	No Rain Or Snow	Yes	SN99284403X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Upstream	Upstream Node:	SN99284403
Road:	Athgoe	Inspected Length:	68.00 m	Upstream Pipe Depth:	
Location:	Road	Total Length:	68.00 m	Downstream Node:	SN99285403
Surface Type:	Asphalt Highway	Joint Length:		Downstream Pipe Depth:	
Use:	Foul		Pipe Shape:	Circular	
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm	
Flow Control:	No flow control		Material:	Concrete	
Year Constructed:	Not Specified		Lining Type:	No Lining	
Inspection Purpose:	Sample condition surve	у	Lining Material:	No Lining	

Comments:

Recom	mendation	s:					
Scale:	1:478	Position [m]	Code	Observation	MPEG	Photo	Grade
	Depth: m 99285403	0.00	МН	Start node, manhole, reference: SN99285403	00:00:00	1	
(0.06	WL	Water level, 15% of the vertical dimension	00:00:07	2	
		1.80	WL	Water level, 10% of the vertical dimension	00:00:22		
		2.81	WL	Water level, 5% of the vertical dimension	00:00:30		
		29.05	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss	00:02:54	3	3
		32.83	DEE	Attached deposits, encrustation from 11 o'clock to 4 o'clock, 5% cross-sectional area loss	00:03:25	4	3
		34.64	DEE	Attached deposits, encrustation from 12 o'clock to 5 o'clock, 5% cross-sectional area loss	00:03:46	5	3
1		35.43	DEEJ	Attached deposits, encrustation at joint from 3 o'clock to 9 o'clock, 15% cross-sectional area loss	00:03:56	6	3
		36.35	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 6 o'clock, 10% cross-sectional area loss	00:04:08	7	3
		38.32	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 6 o'clock, 5% cross-sectional area loss	00:04:25	8	3
		40.90	DEG	Attached deposits, grease at 4 o'clock, 15% cross-sectional area loss	00:04:44	9	3
		44.64	DEE	Attached deposits, encrustation from 10 o'clock to 5 o'clock, 5% cross-sectional area loss	00:05:08	10	3
		52.93	DEE	Attached deposits, encrustation from 2 o'clock to 5 o'clock, 5% cross-sectional area loss	00:05:57	11	3
4		54.95	CXI	Connection defective, connecting pipe is intruding at 3 o'clock, 150mm dia, intrusion: 5%	00:06:19	12	3
		55.08	CL	Crack, longitudinal at 1 o'clock	00:06:26	13	2/2

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

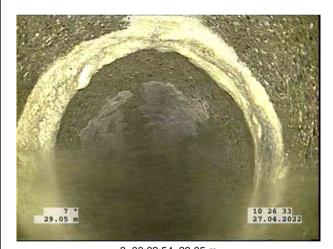
Section Inspection - 27/04/2022 - SN99284403X

Item No.	Insp. No.	Date	Time	Client`s Job Ref	Weather	Pre Cleaned	PLR
3	1	27/04/22	10:32	Athgoe Newcastl	No Rain Or Snow	Yes	SN99284403X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Scale:	1:478	Position [m] 55.80	Code DEE	Observation Attached deposits, encrustation from 6 o'clock to 12 o'clock, 10% cross-sectional area loss	MPEG 00:06:47	Photo 14	Grade 3
1	0	64.58	CN	Connection other than junction at 12 o'clock, 100mm dia	00:07:38	15	
1	99284403 Pepth: m	68.00	MHF	Finish node, manhole, reference: SN99284403	00:08:12	16	

Construction Features						Miscellaneous Features			
Structural Defects						Service &	Operational Ob	servations	
STR No. Def	STR Peak	STR Mean	STR Total	STR Grade	SER No. Def SER Peak SER Mean SER Total SER G				SER Grade
1	10.0	0.0	10.0	2.0	12 4.0 0.0 25.0 3				

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie


Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Upstream	SN99284403X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285403

2, 00:00:07, 0.06 m Water level, 15% of the vertical dimension

3, 00:02:54, 29.05 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 10% cross-sectional area loss

4, 00.03.25, 32.63 m Attached deposits, encrustation from 11 o'clock to 4 o'clock, 5% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Upstream	SN99284403X	Athgoe Newcastl	DBFL

5, 00:03:46, 34.64 m Attached deposits, encrustation from 12 o'clock to 5 o'clock, 5% cross-sectional area loss

6, 00:03:56, 35.43 m Attached deposits, encrustation at joint from 3 o'clock to 9 o'clock, 15% cross-sectional area loss

7, 00:04:08, 36.35 m Attached deposits, encrustation at joint from 12 o'clock to 6 o'clock, 10% cross-sectional area loss

Attached deposits, encrustation at joint from 12 o'clock to 6 o'clock, 5% cross-sectional area loss

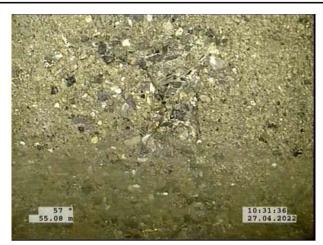
Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Upstream	SN99284403X	Athgoe Newcastl	DBFL

9, 00:04:44, 40.90 m Attached deposits, grease at 4 o'clock, 15% cross-sectional area loss

10, 00:05:08, 44.64 m Attached deposits, encrustation from 10 o'clock to 5 o'clock, 5% cross-sectional area loss

11, 00:05:57, 52.93 m Attached deposits, encrustation from 2 o'clock to 5 o'clock, 5% cross-sectional area loss



Connection defective, connecting pipe is intruding at 3 o'clock, 150mm dia, intrusion: 5%

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
3	Upstream	SN99284403X	Athgoe Newcastl	DBFL

13, 00:06:26, 55.08 m Crack, longitudinal at 1 o'clock

14, 00:06:47, 55.80 m Attached deposits, encrustation from 6 o'clock to 12 o'clock, 10% cross-sectional area loss

15, 00:07:38, 64.58 m Connection other than junction at 12 o'clock, 100mm dia

16, 00:08:12, 68.00 m Finish node, manhole, reference: SN99284403

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Inspection - 27/04/2022 - SN99285502X

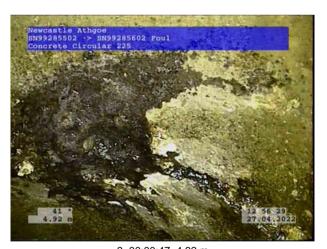
Item No.	Insp. No.	Date	Time	Client's Job Ref	Weather	Pre Cleaned	PLR
4	1	27/04/22	13:04	Athgoe Newcastl	No Rain Or Snow	No	SN99285502X
Ope	rator	Veh	icle	Camera	Preset Length	Legal Status	Alternative ID
A.	AΑ	142-R	N-104	Ipek Rcx 90 Crawler	0.70 m	Public Sewer	Not Specified

Town or Village:	Newcastle	Inspection Direction:	Downstream	Upstream Node:	SN99285502	
Road:	Athgoe	Inspected Length:	47.96 m	Upstream Pipe Depth:		
Location:	Road	Total Length:	47.96 m	Downstream Node:	SN99285602	
Surface Type:	Asphalt Highway	Joint Length:		Downstream Pipe Depth:		
Use:	Foul		Pipe Shape:	Circular		
Type of Pipe:	Gravity drain/sewer		Dia/Height:	225 mm		
Flow Control:	No flow control		Material:	Concrete		
Year Constructed:	Not Specified		Lining Type:	No Lining		
Inspection Purpose:	Sample condition surve	Э	Lining Material:	No Lining		

Recomn	mendation	s:					
	1:414 Depth: m	Position [m]	Code	Observation	MPEG	Photo	Grade
(0.00	МН	Start node, manhole, reference: SN99285502	00:00:00	1	
		0.00	WL	Water level, 5% of the vertical dimension	00:00:06		
		2.86	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss	00:00:29	2	3
		4.92	DEEJ	Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss	00:00:47	3	3
		5.61	DEEJ	Attached deposits, encrustation at joint from 4 o'clock to 8 o'clock, 10% cross-sectional area loss	00:00:55	4	3
ì		6.47	DEEJ	Attached deposits, encrustation at joint from 4 o'clock to 10 o'clock, 5% cross-sectional area loss	00:01:02	5	3
•		33.61	INGG	Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss	00:03:11	6	3
		44.33 S01	INGG	Ingress of gravel from 5 o'clock to 7 o'clock, 10% cross-sectional area loss, start	00:04:20	7	
		<u>45.99</u>	CC	Crack, circumferential from 9 o'clock to 12 o'clock	00:04:45	8	2/2
		47.03	DEC	Settled deposits, hard or compacted, 20% cross-sectional area loss	00:05:19	9	4
15 to 16 to		47.26	JN	Junction at 12 o'clock, 100mm dia	00:05:32	10	
B		47.96 F01	INGG	Ingress of gravel from 5 o'clock to 7 o'clock, 10% cross-sectional area loss, finish	00:05:41		3
		47.96	SA	Survey abandoned: settled depositts. cutting required	00:05:42	11	
		47.96	SA		00:05:42	11	

	Cor	struction Feati	ures		Miscellaneous Features					
	Structural Defects					Service & Operational Observations				
STR No. Def STR Peak STR Mean STR Total STR Grade SER No. Def SER I						SER Peak	SER Mean	SER Total	SER Grade	
1	10.0	0.0	10.0	2.0	8	34.0	4.0			

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie


Item No.	Inspection Direction	PLR	Client`s Job Ref	Contractor`s Job Ref
4	Downstream	SN99285502X	Athgoe Newcastl	DBFL

1, 00:00:00, 0.00 m Start node, manhole, reference: SN99285502

2, 00:00:29, 2.86 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss

3, 00:00:47, 4.92 m Attached deposits, encrustation at joint from 12 o'clock to 12 o'clock, 5% cross-sectional area loss

4, 00:00:55, 5.61 m Attached deposits, encrustation at joint from 4 o'clock to 8 o'clock, 10% cross-sectional area loss

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy@cesenvironmental.ie

Section Pictures - 27/04/2022 - SN99285502X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 4
 Downstream
 SN99285502X
 Athgoe Newcastl
 DBFL

5, 00:01:02, 6.47 m Attached deposits, encrustation at joint from 4 o'clock to 10 o'clock, 5% cross-sectional area loss

6, 00:03:11, 33.61 m Ingress of gravel from 5 o'clock to 7 o'clock, 5% cross-sectional area loss

7, 00:04:20, 44.33 m Ingress of gravel from 5 o'clock to 7 o'clock, 10% cross-sectional area loss, start

8, 00:04:45, 45.99 m Crack, circumferential from 9 o'clock to 12 o'clock

Tracklands Business Park, Clonroad More, Ennis Tel. 065 - 6866850 kmurphy @cesenvironmental.ie

Section Pictures - 27/04/2022 - SN99285502X

 Item No.
 Inspection Direction
 PLR
 Client's Job Ref
 Contractor's Job Ref

 4
 Downstream
 SN99285502X
 Athgoe Newcastl
 DBFL

9, 00:05:19, 47.03 m Settled deposits, hard or compacted, 20% cross-sectional area

10, 00:05:32, 47.26 m Junction at 12 o'clock, 100mm dia

11, 00:05:42, 47.96 m Survey abandoned, settled depositts. cutting required